Loogle!
Result
Found 215 declarations mentioning AlgebraicGeometry.Scheme.Cover.map. Of these, only the first 200 are shown.
- AlgebraicGeometry.Scheme.Cover.map_prop π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (self : AlgebraicGeometry.Scheme.Cover P X) (j : self.J) : P (self.map j) - AlgebraicGeometry.Scheme.Cover.map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (self : AlgebraicGeometry.Scheme.Cover P X) (j : self.J) : self.obj j βΆ X - AlgebraicGeometry.Scheme.Cover.changeProp π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (Q : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) (π° : AlgebraicGeometry.Scheme.Cover P X) (h : β (j : π°.J), Q (π°.map j)) : AlgebraicGeometry.Scheme.Cover Q X - AlgebraicGeometry.Scheme.AffineCover.cover_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.AffineCover P X) (j : π°.J) : π°.cover.map j = π°.map j - AlgebraicGeometry.Scheme.coverOfIsIso_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.ContainsIdentities] [P.RespectsIso] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [CategoryTheory.IsIso f] (xβ : PUnit.{v + 1}) : (AlgebraicGeometry.Scheme.coverOfIsIso f).map xβ = f - AlgebraicGeometry.Scheme.Cover.pullbackCover π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] : AlgebraicGeometry.Scheme.Cover P W - AlgebraicGeometry.Scheme.Cover.pullbackCover' π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback (π°.map x) f] : AlgebraicGeometry.Scheme.Cover P W - AlgebraicGeometry.Scheme.Cover.inter π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [P.IsStableUnderComposition] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X : AlgebraicGeometry.Scheme} (π°β : AlgebraicGeometry.Scheme.Cover P X) (π°β : AlgebraicGeometry.Scheme.Cover P X) [β (i : π°β.J) (j : π°β.J), CategoryTheory.Limits.HasPullback (π°β.map i) (π°β.map j)] : AlgebraicGeometry.Scheme.Cover P X - AlgebraicGeometry.Scheme.Cover.pullbackCover'_J π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback (π°.map x) f] : (π°.pullbackCover' f).J = π°.J - AlgebraicGeometry.Scheme.Cover.pullbackCover_J π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] : (π°.pullbackCover f).J = π°.J - AlgebraicGeometry.Scheme.Cover.pullbackHom π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) (i : π°.1) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] : (π°.pullbackCover f).obj i βΆ π°.obj i - AlgebraicGeometry.Scheme.Cover.Hom.w π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} {π° π± : AlgebraicGeometry.Scheme.Cover P X} (self : π°.Hom π±) (j : π°.J) : CategoryTheory.CategoryStruct.comp (self.app j) (π±.map (self.idx j)) = π°.map j - AlgebraicGeometry.Scheme.Cover.pullbackCover'_obj π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback (π°.map x) f] (x : π°.J) : (π°.pullbackCover' f).obj x = CategoryTheory.Limits.pullback (π°.map x) f - AlgebraicGeometry.Scheme.Cover.pullbackCover_obj π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] (x : π°.J) : (π°.pullbackCover f).obj x = CategoryTheory.Limits.pullback f (π°.map x) - AlgebraicGeometry.Scheme.Cover.pullbackCover'_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback (π°.map x) f] (xβ : π°.J) : (π°.pullbackCover' f).map xβ = CategoryTheory.Limits.pullback.snd (π°.map xβ) f - AlgebraicGeometry.Scheme.Cover.pullbackCover_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] (xβ : π°.J) : (π°.pullbackCover f).map xβ = CategoryTheory.Limits.pullback.fst f (π°.map xβ) - AlgebraicGeometry.Scheme.Cover.add_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X Y : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : Y βΆ X) (hf : P f := by infer_instance) (i : Option π°.J) : (π°.add f hf).map i = Option.rec f π°.map i - AlgebraicGeometry.Scheme.Cover.Hom.mk π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} {π° π± : AlgebraicGeometry.Scheme.Cover P X} (idx : π°.J β π±.J) (app : (j : π°.J) β π°.obj j βΆ π±.obj (idx j)) (app_prop : β (j : π°.J), P (app j) := by infer_instance) (w : β (j : π°.J), CategoryTheory.CategoryStruct.comp (app j) (π±.map (idx j)) = π°.map j := by aesop_cat) : π°.Hom π± - AlgebraicGeometry.Scheme.Cover.Hom.w_assoc π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} {π° π± : AlgebraicGeometry.Scheme.Cover P X} (self : π°.Hom π±) (j : π°.J) {Z : AlgebraicGeometry.Scheme} (h : X βΆ Z) : CategoryTheory.CategoryStruct.comp (self.app j) (CategoryTheory.CategoryStruct.comp (π±.map (self.idx j)) h) = CategoryTheory.CategoryStruct.comp (π°.map j) h - AlgebraicGeometry.Scheme.Cover.pullbackHom_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] (i : π°.1) : CategoryTheory.CategoryStruct.comp (π°.pullbackHom f i) (π°.map i) = CategoryTheory.CategoryStruct.comp ((π°.pullbackCover f).map i) f - AlgebraicGeometry.Scheme.Cover.Hom.mk.sizeOf_spec π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} {π° π± : AlgebraicGeometry.Scheme.Cover P X} [β¦X Y : AlgebraicGeometry.Schemeβ¦ β (x : X βΆ Y) β SizeOf (P x)] (idx : π°.J β π±.J) (app : (j : π°.J) β π°.obj j βΆ π±.obj (idx j)) (app_prop : β (j : π°.J), P (app j) := by infer_instance) (w : β (j : π°.J), CategoryTheory.CategoryStruct.comp (app j) (π±.map (idx j)) = π°.map j := by aesop_cat) : sizeOf { idx := idx, app := app, app_prop := app_prop, w := w } = 1 - AlgebraicGeometry.Scheme.Cover.copy π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.RespectsIso] {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (J : Type u_1) (obj : J β AlgebraicGeometry.Scheme) (map : (i : J) β obj i βΆ X) (eβ : J β π°.J) (eβ : (i : J) β obj i β π°.obj (eβ i)) (h : β (i : J), map i = CategoryTheory.CategoryStruct.comp (eβ i).hom (π°.map (eβ i))) : AlgebraicGeometry.Scheme.Cover P X - AlgebraicGeometry.Scheme.Cover.pullbackHom_map_assoc π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] (i : π°.1) {Z : AlgebraicGeometry.Scheme} (h : X βΆ Z) : CategoryTheory.CategoryStruct.comp (π°.pullbackHom f i) (CategoryTheory.CategoryStruct.comp (π°.map i) h) = CategoryTheory.CategoryStruct.comp ((π°.pullbackCover f).map i) (CategoryTheory.CategoryStruct.comp f h) - AlgebraicGeometry.Scheme.Cover.copy_J π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.RespectsIso] {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (J : Type u_1) (obj : J β AlgebraicGeometry.Scheme) (map : (i : J) β obj i βΆ X) (eβ : J β π°.J) (eβ : (i : J) β obj i β π°.obj (eβ i)) (h : β (i : J), map i = CategoryTheory.CategoryStruct.comp (eβ i).hom (π°.map (eβ i))) : (π°.copy J obj map eβ eβ h).J = J - AlgebraicGeometry.Scheme.Cover.copy_obj π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.RespectsIso] {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (J : Type u_1) (obj : J β AlgebraicGeometry.Scheme) (map : (i : J) β obj i βΆ X) (eβ : J β π°.J) (eβ : (i : J) β obj i β π°.obj (eβ i)) (h : β (i : J), map i = CategoryTheory.CategoryStruct.comp (eβ i).hom (π°.map (eβ i))) (aβ : J) : (π°.copy J obj map eβ eβ h).obj aβ = obj aβ - AlgebraicGeometry.Scheme.Cover.copy_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.RespectsIso] {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (J : Type u_1) (obj : J β AlgebraicGeometry.Scheme) (map : (i : J) β obj i βΆ X) (eβ : J β π°.J) (eβ : (i : J) β obj i β π°.obj (eβ i)) (h : β (i : J), map i = CategoryTheory.CategoryStruct.comp (eβ i).hom (π°.map (eβ i))) (i : J) : (π°.copy J obj map eβ eβ h).map i = map i - AlgebraicGeometry.Scheme.Cover.pullbackCover'_f π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback (π°.map x) f] (x : ββW.toPresheafedSpace) : (π°.pullbackCover' f).f x = π°.f ((CategoryTheory.ConcreteCategory.hom f.base) x) - AlgebraicGeometry.Scheme.Cover.pullbackCover_f π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] (x : ββW.toPresheafedSpace) : (π°.pullbackCover f).f x = π°.f ((CategoryTheory.ConcreteCategory.hom f.base) x) - AlgebraicGeometry.Scheme.Cover.exists_eq π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (x : ββX.toPresheafedSpace) : β i y, (CategoryTheory.ConcreteCategory.hom (π°.map i).base) y = x - AlgebraicGeometry.Scheme.Cover.mkOfCovers_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (J : Type u_1) (obj : J β AlgebraicGeometry.Scheme) (map : (j : J) β obj j βΆ X) (covers : β (x : ββX.toPresheafedSpace), β j y, (CategoryTheory.ConcreteCategory.hom (map j).base) y = x) (map_prop : β (j : J), P (map j) := by infer_instance) (j : J) : (AlgebraicGeometry.Scheme.Cover.mkOfCovers J obj map covers map_prop).map j = map j - AlgebraicGeometry.Scheme.Cover.iUnion_range π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) : β i, Set.range β(CategoryTheory.ConcreteCategory.hom (π°.map i).base) = Set.univ - AlgebraicGeometry.Scheme.Cover.pushforwardIso_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.RespectsIso] [P.ContainsIdentities] [P.IsStableUnderComposition] {X Y : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : X βΆ Y) [CategoryTheory.IsIso f] (xβ : π°.J) : (π°.pushforwardIso f).map xβ = CategoryTheory.CategoryStruct.comp (π°.map xβ) f - AlgebraicGeometry.Scheme.Cover.Hom.mk.injEq π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} {π° π± : AlgebraicGeometry.Scheme.Cover P X} (idx : π°.J β π±.J) (app : (j : π°.J) β π°.obj j βΆ π±.obj (idx j)) (app_prop : β (j : π°.J), P (app j) := by infer_instance) (w : β (j : π°.J), CategoryTheory.CategoryStruct.comp (app j) (π±.map (idx j)) = π°.map j := by aesop_cat) (idxβ : π°.J β π±.J) (appβ : (j : π°.J) β π°.obj j βΆ π±.obj (idxβ j)) (app_propβ : β (j : π°.J), P (appβ j) := by infer_instance) (wβ : β (j : π°.J), CategoryTheory.CategoryStruct.comp (appβ j) (π±.map (idxβ j)) = π°.map j := by aesop_cat) : ({ idx := idx, app := app, app_prop := app_prop, w := w } = { idx := idxβ, app := appβ, app_prop := app_propβ, w := wβ }) = (idx = idxβ β§ HEq app appβ) - AlgebraicGeometry.Scheme.Cover.bind_map π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) [P.IsStableUnderComposition] (f : (x : π°.J) β AlgebraicGeometry.Scheme.Cover P (π°.obj x)) (x : (i : π°.J) Γ (f i).J) : (π°.bind f).map x = CategoryTheory.CategoryStruct.comp ((f x.fst).map x.snd) (π°.map x.fst) - AlgebraicGeometry.Scheme.Cover.covers π Mathlib.AlgebraicGeometry.Cover.MorphismProperty
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (self : AlgebraicGeometry.Scheme.Cover P X) (x : ββX.toPresheafedSpace) : x β Set.range β(CategoryTheory.ConcreteCategory.hom (self.map (self.f x)).base) - AlgebraicGeometry.Scheme.instIsOpenImmersionMap π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (i : π°.J) : AlgebraicGeometry.IsOpenImmersion (π°.map i) - AlgebraicGeometry.Scheme.OpenCover.IsOpen π Mathlib.AlgebraicGeometry.Cover.Open
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} (self : AlgebraicGeometry.Scheme.Cover P X) (j : self.J) : P (self.map j) - AlgebraicGeometry.Scheme.affineOpenCover_map π Mathlib.AlgebraicGeometry.Cover.Open
(X : AlgebraicGeometry.Scheme) (j : X.affineCover.J) : X.affineOpenCover.map j = X.affineCover.map j - AlgebraicGeometry.Scheme.AffineOpenCover.openCover_map π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (π° : X.AffineOpenCover) (j : π°.J) : π°.openCover.map j = π°.map j - AlgebraicGeometry.Scheme.OpenCover.isOpenCover_opensRange π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) : TopologicalSpace.IsOpenCover fun i => AlgebraicGeometry.Scheme.Hom.opensRange (π°.map i) - AlgebraicGeometry.Scheme.OpenCover.iSup_opensRange π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) : β¨ i, AlgebraicGeometry.Scheme.Hom.opensRange (π°.map i) = β€ - AlgebraicGeometry.Scheme.Cover.pullbackHom.eq_1 π Mathlib.AlgebraicGeometry.Cover.Open
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) (i : π°.1) [β (x : π°.J), CategoryTheory.Limits.HasPullback f (π°.map x)] : π°.pullbackHom f i = CategoryTheory.Limits.pullback.snd f (π°.map i) - AlgebraicGeometry.Scheme.affineBasisCover_is_basis π Mathlib.AlgebraicGeometry.Cover.Open
(X : AlgebraicGeometry.Scheme) : TopologicalSpace.IsTopologicalBasis {x | β a, x = Set.range β(CategoryTheory.ConcreteCategory.hom (X.affineBasisCover.map a).base)} - AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso π Mathlib.AlgebraicGeometry.Cover.Open
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).J) : (AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).obj i β (AlgebraicGeometry.Scheme.Cover.pullbackCover (π°.obj i.fst).affineCover (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i.fst)).obj i.snd - AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_obj π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) [H : CompactSpace ββX.toPresheafedSpace] (x : { x // x β β―.choose }) : π°.finiteSubcover.obj x = π°.obj (π°.f βx) - AlgebraicGeometry.Scheme.OpenCover.finiteSubcover_map π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) [H : CompactSpace ββX.toPresheafedSpace] (x : { x // x β β―.choose }) : π°.finiteSubcover.map x = π°.map (π°.f βx) - AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom π Mathlib.AlgebraicGeometry.Cover.Open
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso f π° i).inv (AlgebraicGeometry.Scheme.Cover.pullbackHom π°.affineRefinement.openCover f i) = AlgebraicGeometry.Scheme.Cover.pullbackHom (π°.obj i.fst).affineCover (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i.fst) i.snd - AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_pullbackHom_assoc π Mathlib.AlgebraicGeometry.Cover.Open
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).J) {Z : AlgebraicGeometry.Scheme} (h : π°.affineRefinement.openCover.obj i βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso f π° i).inv (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.pullbackHom π°.affineRefinement.openCover f i) h) = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.pullbackHom (π°.obj i.fst).affineCover (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i.fst) i.snd) h - AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map_assoc π Mathlib.AlgebraicGeometry.Cover.Open
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).J) {Z : AlgebraicGeometry.Scheme} (h : X βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso f π° i).inv (CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).map i) h) = CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.pullbackCover (π°.obj i.fst).affineCover (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i.fst)).map i.snd) (CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).map i.fst) h) - AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso_inv_map π Mathlib.AlgebraicGeometry.Cover.Open
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso f π° i).inv ((AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).map i) = CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.pullbackCover (π°.obj i.fst).affineCover (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i.fst)).map i.snd) ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).map i.fst) - AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso.eq_1 π Mathlib.AlgebraicGeometry.Cover.Open
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π°.affineRefinement.openCover f).J) : AlgebraicGeometry.Scheme.OpenCover.pullbackCoverAffineRefinementObjIso f π° i = CategoryTheory.Limits.pullbackSymmetry f (π°.affineRefinement.openCover.map i) βͺβ« (CategoryTheory.Limits.pullbackRightPullbackFstIso (π°.map i.fst) f (((fun j => (π°.obj j).affineCover) i.fst).map i.snd)).symm βͺβ« CategoryTheory.Limits.pullbackSymmetry (((fun j => (π°.obj j).affineCover) i.fst).map i.snd) (CategoryTheory.Limits.pullback.fst (π°.map i.fst) f) βͺβ« CategoryTheory.asIso (CategoryTheory.Limits.pullback.map (CategoryTheory.Limits.pullback.fst (π°.map i.fst) f) (((fun j => (π°.obj j).affineCover) i.fst).map i.snd) (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i.fst) ((π°.obj i.fst).affineCover.map i.snd) (CategoryTheory.Limits.pullbackSymmetry (π°.map i.fst) f).hom (CategoryTheory.CategoryStruct.id (π°.affineRefinement.openCover.obj i)) (CategoryTheory.CategoryStruct.id (π°.obj i.fst)) β― β―) - AlgebraicGeometry.Scheme.OpenCover.ext_elem π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} {U : X.Opens} (f g : β(X.presheaf.obj (Opposite.op U))) (π° : X.OpenCover) (h : β (i : π°.J), (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (π°.map i) U)) f = (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (π°.map i) U)) g) : f = g - AlgebraicGeometry.Scheme.zero_of_zero_cover π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} {U : X.Opens} (s : β(X.presheaf.obj (Opposite.op U))) (π° : X.OpenCover) (h : β (i : π°.J), (CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (π°.map i) U)) s = 0) : s = 0 - AlgebraicGeometry.Scheme.isNilpotent_of_isNilpotent_cover π Mathlib.AlgebraicGeometry.Cover.Open
{X : AlgebraicGeometry.Scheme} {U : X.Opens} (s : β(X.presheaf.obj (Opposite.op U))) (π° : X.OpenCover) [Finite π°.J] (h : β (i : π°.J), IsNilpotent ((CategoryTheory.ConcreteCategory.hom (AlgebraicGeometry.Scheme.Hom.app (π°.map i) U)) s)) : IsNilpotent s - AlgebraicGeometry.Scheme.affineBasisCover_map_range π Mathlib.AlgebraicGeometry.Cover.Open
(X : AlgebraicGeometry.Scheme) (x : ββX.toPresheafedSpace) (r : ββ―.choose) : Set.range β(CategoryTheory.ConcreteCategory.hom (X.affineBasisCover.map β¨x, rβ©).base) = β(CategoryTheory.ConcreteCategory.hom (X.affineCover.map x).base) '' (PrimeSpectrum.basicOpen r).carrier - AlgebraicGeometry.Scheme.openCoverOfISupEqTop_map π Mathlib.AlgebraicGeometry.Restrict
{s : Type u_1} (X : AlgebraicGeometry.Scheme) (U : s β X.Opens) (hU : β¨ i, U i = β€) (i : s) : (X.openCoverOfISupEqTop U hU).map i = (U i).ΞΉ - AlgebraicGeometry.Scheme.OpenCover.restrict_obj π Mathlib.AlgebraicGeometry.Restrict
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (U : X.Opens) (xβ : π°.J) : (π°.restrict U).obj xβ = β((TopologicalSpace.Opens.map (π°.map xβ).base).obj U) - AlgebraicGeometry.Scheme.OpenCover.restrict_map π Mathlib.AlgebraicGeometry.Restrict
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (U : X.Opens) (xβ : π°.J) : (π°.restrict U).map xβ = π°.map xβ β£_ U - AlgebraicGeometry.Scheme.GlueData.openCover_map π Mathlib.AlgebraicGeometry.Gluing
(D : AlgebraicGeometry.Scheme.GlueData) (i : D.J) : D.openCover.map i = D.ΞΉ i - AlgebraicGeometry.Scheme.Cover.ΞΉ_fromGlued π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x : π°.J) : CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.gluedCover π°).ΞΉ x) (AlgebraicGeometry.Scheme.Cover.fromGlued π°) = π°.map x - AlgebraicGeometry.Scheme.Cover.fromGlued.eq_1 π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) : AlgebraicGeometry.Scheme.Cover.fromGlued π° = CategoryTheory.Limits.Multicoequalizer.desc (AlgebraicGeometry.Scheme.Cover.gluedCover π°).diagram X (fun x => π°.map x) β― - AlgebraicGeometry.Scheme.Cover.gluedCover_V π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (xβ : π°.J Γ π°.J) : (AlgebraicGeometry.Scheme.Cover.gluedCover π°).V xβ = match xβ with | (x, y) => CategoryTheory.Limits.pullback (π°.map x) (π°.map y) - AlgebraicGeometry.Scheme.Cover.gluedCover_f π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (xβ xβΒΉ : π°.J) : (AlgebraicGeometry.Scheme.Cover.gluedCover π°).f xβ xβΒΉ = CategoryTheory.Limits.pullback.fst (π°.map xβ) (π°.map xβΒΉ) - AlgebraicGeometry.Scheme.Cover.hom_ext π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (fβ fβ : X βΆ Y) (h : β (x : π°.J), CategoryTheory.CategoryStruct.comp (π°.map x) fβ = CategoryTheory.CategoryStruct.comp (π°.map x) fβ) : fβ = fβ - AlgebraicGeometry.Scheme.Cover.ΞΉ_fromGlued_assoc π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x : π°.J) {Z : AlgebraicGeometry.Scheme} (h : X βΆ Z) : CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.gluedCover π°).ΞΉ x) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.fromGlued π°) h) = CategoryTheory.CategoryStruct.comp (π°.map x) h - AlgebraicGeometry.Scheme.Cover.gluedCover_t π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (xβ xβΒΉ : π°.J) : (AlgebraicGeometry.Scheme.Cover.gluedCover π°).t xβ xβΒΉ = (CategoryTheory.Limits.pullbackSymmetry (π°.map xβ) (π°.map xβΒΉ)).hom - AlgebraicGeometry.Scheme.Cover.glueMorphisms.eq_1 π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f : (x : π°.J) β π°.obj x βΆ Y) (hf : β (x y : π°.J), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (f x) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) (f y)) : AlgebraicGeometry.Scheme.Cover.glueMorphisms π° f hf = CategoryTheory.CategoryStruct.comp (CategoryTheory.inv (AlgebraicGeometry.Scheme.Cover.fromGlued π°)) (CategoryTheory.Limits.Multicoequalizer.desc (AlgebraicGeometry.Scheme.Cover.gluedCover π°).diagram Y f β―) - AlgebraicGeometry.Scheme.Cover.glueMorphisms π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f : (x : π°.J) β π°.obj x βΆ Y) (hf : β (x y : π°.J), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (f x) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) (f y)) : X βΆ Y - AlgebraicGeometry.Scheme.Cover.ΞΉ_glueMorphisms π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f : (x : π°.J) β π°.obj x βΆ Y) (hf : β (x y : π°.J), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (f x) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) (f y)) (x : π°.J) : CategoryTheory.CategoryStruct.comp (π°.map x) (AlgebraicGeometry.Scheme.Cover.glueMorphisms π° f hf) = f x - AlgebraicGeometry.Scheme.Cover.ΞΉ_glueMorphisms_assoc π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) {Y : AlgebraicGeometry.Scheme} (f : (x : π°.J) β π°.obj x βΆ Y) (hf : β (x y : π°.J), CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (f x) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) (f y)) (x : π°.J) {Z : AlgebraicGeometry.Scheme} (h : Y βΆ Z) : CategoryTheory.CategoryStruct.comp (π°.map x) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.glueMorphisms π° f hf) h) = CategoryTheory.CategoryStruct.comp (f x) h - AlgebraicGeometry.Scheme.Cover.gluedCoverT' π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.Limits.pullback (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z)) βΆ CategoryTheory.Limits.pullback (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x)) - AlgebraicGeometry.Scheme.Cover.gluedCover_t' π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : (AlgebraicGeometry.Scheme.Cover.gluedCover π°).t' x y z = AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.Limits.pullback.snd (π°.map y) (π°.map z))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map z)) - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.Limits.pullback.snd (π°.map y) (π°.map x))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_fst_assoc π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) {Z : AlgebraicGeometry.Scheme} (h : π°.obj y βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) h) - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_fst_snd_assoc π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) {Z : AlgebraicGeometry.Scheme} (h : π°.obj z βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map y) (π°.map z)) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map z)) h) - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_fst_assoc π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) {Z : AlgebraicGeometry.Scheme} (h : π°.obj y βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x)) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map x) (π°.map y)) h) - AlgebraicGeometry.Scheme.Cover.gluedCoverT'_snd_snd_assoc π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) {Z : AlgebraicGeometry.Scheme} (h : π°.obj x βΆ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map z)) (CategoryTheory.Limits.pullback.fst (π°.map y) (π°.map x))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map y) (π°.map x)) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) h) - AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° y z x) (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° z x y)) = CategoryTheory.CategoryStruct.id (CategoryTheory.Limits.pullback (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))) - AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_fst π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° y z x) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° z x y) (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))))) = CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z)) - AlgebraicGeometry.Scheme.Cover.glued_cover_cocycle_snd π Mathlib.AlgebraicGeometry.Gluing
{X : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (x y z : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° x y z) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° y z x) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Cover.gluedCoverT' π° z x y) (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z))))) = CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map y)) (CategoryTheory.Limits.pullback.fst (π°.map x) (π°.map z)) - AlgebraicGeometry.Scheme.Pullback.gluing π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : AlgebraicGeometry.Scheme.GlueData - AlgebraicGeometry.Scheme.Pullback.hasPullback_of_cover π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : CategoryTheory.Limits.HasPullback f g - AlgebraicGeometry.Scheme.Pullback.v π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : AlgebraicGeometry.Scheme - AlgebraicGeometry.Scheme.Pullback.p1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).glued βΆ X - AlgebraicGeometry.Scheme.Pullback.p2 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).glued βΆ Y - AlgebraicGeometry.Scheme.Pullback.gluing_J π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).J = π°.J - AlgebraicGeometry.Scheme.Pullback.diagonalCover π Mathlib.AlgebraicGeometry.Pullbacks
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (π± : (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).J) β ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).obj i).OpenCover) : (CategoryTheory.Limits.pullback.diagonalObj f).OpenCover - AlgebraicGeometry.Scheme.Pullback.diagonalCoverDiagonalRange π Mathlib.AlgebraicGeometry.Pullbacks
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (π± : (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).J) β ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).obj i).OpenCover) : (CategoryTheory.Limits.pullback.diagonalObj f).Opens - AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_obj π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (i : π°.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft π° f g).obj i = CategoryTheory.Limits.pullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g - AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_obj π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : Y.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (i : π°.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfRight π° f g).obj i = CategoryTheory.Limits.pullback f (CategoryTheory.CategoryStruct.comp (π°.map i) g) - AlgebraicGeometry.Scheme.Pullback.t π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : AlgebraicGeometry.Scheme.Pullback.v π° f g i j βΆ AlgebraicGeometry.Scheme.Pullback.v π° f g j i - AlgebraicGeometry.Scheme.Pullback.gluedLift π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) : s.pt βΆ (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).glued - AlgebraicGeometry.Scheme.Pullback.gluing_U π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).U i = CategoryTheory.Limits.pullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g - AlgebraicGeometry.Scheme.Pullback.gluing_t π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).t i j = AlgebraicGeometry.Scheme.Pullback.t π° f g i j - AlgebraicGeometry.Scheme.Pullback.gluedIsLimit π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : CategoryTheory.Limits.IsLimit (CategoryTheory.Limits.PullbackCone.mk (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (AlgebraicGeometry.Scheme.Pullback.p2 π° f g) β―) - AlgebraicGeometry.Scheme.Pullback.fV π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : AlgebraicGeometry.Scheme.Pullback.v π° f g i j βΆ CategoryTheory.Limits.pullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g - AlgebraicGeometry.Scheme.Pullback.gluing_V π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (xβ : π°.J Γ π°.J) : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).V xβ = match xβ with | (i, j) => AlgebraicGeometry.Scheme.Pullback.v π° f g i j - AlgebraicGeometry.Scheme.Pullback.t_id π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : AlgebraicGeometry.Scheme.Pullback.t π° f g i i = CategoryTheory.CategoryStruct.id (AlgebraicGeometry.Scheme.Pullback.v π° f g i i) - AlgebraicGeometry.Scheme.Pullback.p_comm π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) f = CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.p2 π° f g) g - AlgebraicGeometry.Scheme.Pullback.gluing_ΞΉ π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (j : π°.J) : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j = CategoryTheory.Limits.Multicoequalizer.Ο (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).diagram j - AlgebraicGeometry.Scheme.Pullback.gluedLift_p1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.gluedLift π° f g s) (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) = s.fst - AlgebraicGeometry.Scheme.Pullback.gluedLift_p2 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.gluedLift π° f g s) (AlgebraicGeometry.Scheme.Pullback.p2 π° f g) = s.snd - AlgebraicGeometry.Scheme.Pullback.left_affine_comp_pullback_hasPullback π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (f : X βΆ Z) (g : Y βΆ Z) (i : Z.affineCover.J) : CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.pullbackCover Z.affineCover f).map i) f) g - AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_obj π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : Z.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (i : π°.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfBase π° f g).obj i = CategoryTheory.Limits.pullback (CategoryTheory.Limits.pullback.snd f (π°.map i)) (CategoryTheory.Limits.pullback.snd g (π°.map i)) - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : CategoryTheory.Limits.pullback (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i) β CategoryTheory.Limits.pullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g - AlgebraicGeometry.Scheme.Pullback.p2.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : AlgebraicGeometry.Scheme.Pullback.p2 π° f g = CategoryTheory.Limits.Multicoequalizer.desc (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).diagram Y (fun i => CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) β― - AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_obj π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π°X : X.OpenCover) (π°Y : Y.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (ij : π°X.J Γ π°Y.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight π°X π°Y f g).obj ij = CategoryTheory.Limits.pullback (CategoryTheory.CategoryStruct.comp (π°X.map ij.1) f) (CategoryTheory.CategoryStruct.comp (π°Y.map ij.2) g) - AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft_map π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (i : π°.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft π° f g).map i = CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp (π°.map i) f) g f g (π°.map i) (CategoryTheory.CategoryStruct.id Y) (CategoryTheory.CategoryStruct.id Z) β― β― - AlgebraicGeometry.Scheme.Pullback.openCoverOfRight_map π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : Y.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (i : π°.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfRight π° f g).map i = CategoryTheory.Limits.pullback.map f (CategoryTheory.CategoryStruct.comp (π°.map i) g) f g (CategoryTheory.CategoryStruct.id X) (π°.map i) (CategoryTheory.CategoryStruct.id Z) β― β― - AlgebraicGeometry.Scheme.Pullback.p1.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] : AlgebraicGeometry.Scheme.Pullback.p1 π° f g = CategoryTheory.Limits.Multicoequalizer.desc (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).diagram X (fun i => CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) β― - AlgebraicGeometry.Scheme.Pullback.openCoverOfBase_map π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : Z.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (i : π°.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfBase π° f g).map i = CategoryTheory.Limits.pullback.map (CategoryTheory.Limits.pullback.snd f (π°.map i)) (CategoryTheory.Limits.pullback.snd g (π°.map i)) f g (CategoryTheory.Limits.pullback.fst f (π°.map i)) (CategoryTheory.Limits.pullback.fst g (π°.map i)) (π°.map i) β― β― - AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight_map π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π°X : X.OpenCover) (π°Y : Y.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (ij : π°X.J Γ π°Y.J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfLeftRight π°X π°Y f g).map ij = CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp (π°X.map ij.1) f) (CategoryTheory.CategoryStruct.comp (π°Y.map ij.2) g) f g (π°X.map ij.1) (π°Y.map ij.2) (CategoryTheory.CategoryStruct.id Z) β― β― - AlgebraicGeometry.Scheme.Pullback.gluing_f π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (xβ xβΒΉ : π°.J) : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).f xβ xβΒΉ = CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map xβ) f) g) (π°.map xβ)) (π°.map xβΒΉ) - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).inv (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) = (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ i - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).inv (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) = CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g - AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : CategoryTheory.Limits.pullback (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j) βΆ AlgebraicGeometry.Scheme.Pullback.v π° f g j i - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).hom (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) = CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i) - AlgebraicGeometry.Scheme.Pullback.t_fst_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g)) = CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j) - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ΞΉ π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).hom (CategoryTheory.Limits.Multicoequalizer.Ο (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).diagram i) = CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i) - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).hom (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) (AlgebraicGeometry.Scheme.Pullback.p2 π° f g) - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_fst_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).glued βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) h) = CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ i) h - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_inv_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj i βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h - AlgebraicGeometry.Scheme.Pullback.t_fst_fst_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj j βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) h - AlgebraicGeometry.Scheme.Pullback.t_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj i βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h) - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_fst_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj i βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) h - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i = { hom := CategoryTheory.Limits.pullback.lift (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) (AlgebraicGeometry.Scheme.Pullback.p2 π° f g)) β―, inv := CategoryTheory.Limits.pullback.lift ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ i) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) β―, hom_inv_id := β―, inv_hom_id := β― } - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : Y βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.p2 π° f g) h) - AlgebraicGeometry.Scheme.Pullback.t_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t π° f g i j) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) - AlgebraicGeometry.Scheme.Pullback.t' π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.Limits.pullback (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k) βΆ CategoryTheory.Limits.pullback (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i) - AlgebraicGeometry.Scheme.Pullback.t_fst_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : Y βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h) - AlgebraicGeometry.Scheme.Pullback.gluing_t' π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).t' i j k = AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k - AlgebraicGeometry.Scheme.Pullback.t_fst_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map j) f) g)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) - AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso_hom_ΞΉ_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : CategoryTheory.Limits.multicoequalizer (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).diagram βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackP1Iso π° f g i).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Multicoequalizer.Ο (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).diagram i) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) h - AlgebraicGeometry.Scheme.Pullback.gluedLift.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) : AlgebraicGeometry.Scheme.Pullback.gluedLift π° f g s = (AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).glueMorphisms (fun i => CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry s.fst (π°.map i)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.map (π°.map i) s.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g (CategoryTheory.CategoryStruct.id (π°.obj i)) s.snd f β― β―) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ i))) β― - AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) (i j : π°.J) : CategoryTheory.Limits.pullback ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map i) ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map j) βΆ (AlgebraicGeometry.Scheme.Pullback.gluing π° f g).V (i, j) - AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV π° f g i j) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) = CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j) - AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV_fst_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : CategoryTheory.Limits.pullback (CategoryTheory.CategoryStruct.comp (π°.map j) f) g βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j)) h - AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV π° f g i j) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j)) (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) - AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj i βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) h) - AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : AlgebraicGeometry.Scheme.Pullback.pullbackFstΞΉToV π° f g i j = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j) βͺβ« CategoryTheory.Limits.pullbackRightPullbackFstIso (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ j)).hom (CategoryTheory.Limits.pullback.congrHom β― β―).hom - AlgebraicGeometry.Scheme.Pullback.cocycle π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g j k i) (AlgebraicGeometry.Scheme.Pullback.t' π° f g k i j)) = CategoryTheory.CategoryStruct.id (CategoryTheory.Limits.pullback (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) - AlgebraicGeometry.Scheme.Pullback.t'_fst_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map k))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k)) - AlgebraicGeometry.Scheme.Pullback.t'_fst_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj k βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map k)) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k)) h) - AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map k)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) - AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) - AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_fst_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj j βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) h))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) h) - AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_fst_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj j βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) h))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) h) - AlgebraicGeometry.Scheme.Pullback.t'_snd_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj i βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h)) - AlgebraicGeometry.Scheme.Pullback.t'_snd_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g)) - AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : Y βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) h))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h)) - AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : Y βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) h))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) h)) - AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) (i j : π°.J) : AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap π° f g s i j = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackRightPullbackFstIso s.fst (π°.map j) ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map i)).hom (CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map i) s.fst) (π°.map j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry s.fst (π°.map i)).hom (CategoryTheory.Limits.pullback.map (π°.map i) s.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g (CategoryTheory.CategoryStruct.id (π°.obj i)) s.snd f β― β―)) (CategoryTheory.CategoryStruct.id (π°.obj j)) (CategoryTheory.CategoryStruct.id X) β― β―) - AlgebraicGeometry.Scheme.Pullback.t'_fst_fst_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map j) f) g))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g)) - AlgebraicGeometry.Scheme.Pullback.t'_snd_fst_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map i)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map j) f) g))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g)) - AlgebraicGeometry.Scheme.Pullback.t.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j : π°.J) : AlgebraicGeometry.Scheme.Pullback.t π° f g i j = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackAssoc (π°.map j) (π°.map i) (CategoryTheory.CategoryStruct.comp (π°.map i) f) g).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map j) (π°.map i)) (CategoryTheory.CategoryStruct.comp (π°.map i) f)) g (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (π°.map i) (π°.map j)) (CategoryTheory.CategoryStruct.comp (π°.map j) f)) g (CategoryTheory.Limits.pullbackSymmetry (π°.map j) (π°.map i)).hom (CategoryTheory.CategoryStruct.id Y) (CategoryTheory.CategoryStruct.id Z) β― β―) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackAssoc (π°.map i) (π°.map j) (CategoryTheory.CategoryStruct.comp (π°.map j) f) g).hom (CategoryTheory.Limits.pullbackSymmetry (π°.map i) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j))).hom))) - AlgebraicGeometry.Scheme.Pullback.t'.eq_1 π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackRightPullbackFstIso (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i))) (π°.map k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j))) (π°.map k) (AlgebraicGeometry.Scheme.Pullback.t π° f g i j) (CategoryTheory.CategoryStruct.id (π°.obj k)) (CategoryTheory.CategoryStruct.id X) β― β―) (CategoryTheory.Limits.pullbackRightPullbackFstIso (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map j) f) g) (π°.map j)) (π°.map k) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i)).inv) (CategoryTheory.Limits.pullbackSymmetry (AlgebraicGeometry.Scheme.Pullback.fV π° f g j i) (AlgebraicGeometry.Scheme.Pullback.fV π° f g j k)).hom) - AlgebraicGeometry.Scheme.Pullback.cocycle_fst_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g j k i) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g k i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j))))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) - AlgebraicGeometry.Scheme.Pullback.cocycle_snd_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g j k i) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g k i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k))))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k)) - AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) (i j : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap π° f g s i j) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map i) ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map j)) (CategoryTheory.Limits.pullback.snd s.fst (π°.map j)) - AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_snd_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) (i j : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : π°.obj j βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap π° f g s i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map i) ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd s.fst (π°.map j)) h) - AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g j k i) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g k i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g))))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g)) - AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_snd π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g j k i) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g k i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g))))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp (π°.map i) f) g)) - AlgebraicGeometry.Scheme.Pullback.cocycle_fst_fst_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g j k i) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g k i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g))))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g)) - AlgebraicGeometry.Scheme.Pullback.cocycle_snd_fst_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i j k : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g i j k) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g j k i) (CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.t' π° f g k i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g))))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.fV π° f g i j) (AlgebraicGeometry.Scheme.Pullback.fV π° f g i k)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map k)) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g)) - AlgebraicGeometry.Scheme.Pullback.diagonalRestrictIsoDiagonal π Mathlib.AlgebraicGeometry.Pullbacks
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (π± : (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).J) β ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).obj i).OpenCover) (i : (AlgebraicGeometry.Scheme.Pullback.openCoverOfBase π° f f).J) (j : (π± i).J) : CategoryTheory.Arrow.mk (CategoryTheory.Limits.pullback.diagonal f β£_ AlgebraicGeometry.Scheme.Hom.opensRange ((AlgebraicGeometry.Scheme.Pullback.diagonalCover f π° π±).map β¨i, (j, j)β©)) β CategoryTheory.Arrow.mk (CategoryTheory.Limits.pullback.diagonal (CategoryTheory.CategoryStruct.comp ((π± i).map j) (CategoryTheory.Limits.pullback.snd f (π°.map i)))) - AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) (i j : π°.J) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap π° f g s i j) (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map i) ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry s.fst (π°.map i)).hom (CategoryTheory.Limits.pullback.map (π°.map i) s.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g (CategoryTheory.CategoryStruct.id (π°.obj i)) s.snd f β― β―)) - AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap_fst_assoc π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (s : CategoryTheory.Limits.PullbackCone f g) (i j : π°.J) {Zβ : AlgebraicGeometry.Scheme} (h : CategoryTheory.Limits.pullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g βΆ Zβ) : CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Pullback.gluedLiftPullbackMap π° f g s i j) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g) (π°.map i)) (π°.map j)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map i) ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° s.fst).map j)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry s.fst (π°.map i)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.map (π°.map i) s.fst (CategoryTheory.CategoryStruct.comp (π°.map i) f) g (CategoryTheory.CategoryStruct.id (π°.obj i)) s.snd f β― β―) h)) - AlgebraicGeometry.Scheme.Pullback.lift_comp_ΞΉ π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : X.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) [β (i : π°.J), CategoryTheory.Limits.HasPullback (CategoryTheory.CategoryStruct.comp (π°.map i) f) g] (i : π°.J) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.lift (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i)) (AlgebraicGeometry.Scheme.Pullback.p2 π° f g)) β―) ((AlgebraicGeometry.Scheme.Pullback.gluing π° f g).ΞΉ i) = CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Pullback.p1 π° f g) (π°.map i) - AlgebraicGeometry.Scheme.Pullback.openCoverOfBase'_map π Mathlib.AlgebraicGeometry.Pullbacks
{X Y Z : AlgebraicGeometry.Scheme} (π° : Z.OpenCover) (f : X βΆ Z) (g : Y βΆ Z) (x : (i : (AlgebraicGeometry.Scheme.Pullback.openCoverOfLeft (AlgebraicGeometry.Scheme.Cover.pullbackCover π° f) f g).J) Γ ((fun i => AlgebraicGeometry.Scheme.coverOfIsIso (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry (CategoryTheory.Limits.pullback.snd f (π°.map i)) (CategoryTheory.Limits.pullback.snd g (π°.map i))).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.limit.isoLimitCone { cone := β―.cone, isLimit := β―.isLimit }).inv (CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd f (π°.map i)) (π°.map i)) g (CategoryTheory.CategoryStruct.comp ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).map i) f) g (CategoryTheory.CategoryStruct.id (CategoryTheory.Limits.pullback f (π°.map i))) (CategoryTheory.CategoryStruct.id Y) (CategoryTheory.CategoryStruct.id Z) β― β―)))) i).J) : (AlgebraicGeometry.Scheme.Pullback.openCoverOfBase' π° f g).map x = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullbackSymmetry (CategoryTheory.Limits.pullback.snd f (π°.map x.fst)) (CategoryTheory.Limits.pullback.snd g (π°.map x.fst))).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.limit.isoLimitCone { cone := β―.cone, isLimit := β―.isLimit }).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.snd f (π°.map x.fst)) (π°.map x.fst)) g (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst f (π°.map x.fst)) f) g (CategoryTheory.CategoryStruct.id (CategoryTheory.Limits.pullback f (π°.map x.fst))) (CategoryTheory.CategoryStruct.id Y) (CategoryTheory.CategoryStruct.id Z) β― β―) (CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst f (π°.map x.fst)) f) g f g (CategoryTheory.Limits.pullback.fst f (π°.map x.fst)) (CategoryTheory.CategoryStruct.id Y) (CategoryTheory.CategoryStruct.id Z) β― β―))) - AlgebraicGeometry.Scheme.Pullback.diagonalCover_map π Mathlib.AlgebraicGeometry.Pullbacks
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) (π± : (i : (AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).J) β ((AlgebraicGeometry.Scheme.Cover.pullbackCover π° f).obj i).OpenCover) (I : (AlgebraicGeometry.Scheme.Pullback.diagonalCover f π° π±).J) : (AlgebraicGeometry.Scheme.Pullback.diagonalCover f π° π±).map I = CategoryTheory.Limits.pullback.map (CategoryTheory.CategoryStruct.comp ((π± I.fst).map I.snd.1) (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f I.fst)) (CategoryTheory.CategoryStruct.comp ((π± I.fst).map I.snd.2) (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f I.fst)) f f (CategoryTheory.CategoryStruct.comp ((π± I.fst).map I.snd.1) (CategoryTheory.Limits.pullback.fst f (π°.map I.fst))) (CategoryTheory.CategoryStruct.comp ((π± I.fst).map I.snd.2) (CategoryTheory.Limits.pullback.fst f (π°.map I.fst))) (π°.map I.fst) β― β― - AlgebraicGeometry.sigmaOpenCover_map π Mathlib.AlgebraicGeometry.Limits
{Ο : Type v} (g : Ο β AlgebraicGeometry.Scheme) [Small.{u, v} Ο] (b : Ο) : (AlgebraicGeometry.sigmaOpenCover g).map b = CategoryTheory.Limits.Sigma.ΞΉ g b - AlgebraicGeometry.IsLocalAtSource.of_openCover π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsLocalAtSource P] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (π° : X.OpenCover) (H : β (i : π°.J), P (CategoryTheory.CategoryStruct.comp (π°.map i) f)) : P f - AlgebraicGeometry.IsLocalAtSource.iff_of_openCover π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [AlgebraicGeometry.IsLocalAtSource P] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (π° : X.OpenCover) : P f β β (i : π°.J), P (CategoryTheory.CategoryStruct.comp (π°.map i) f) - AlgebraicGeometry.IsLocalAtSource.iff_of_openCover' π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [self : AlgebraicGeometry.IsLocalAtSource P] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : X.OpenCover) : P f β β (i : π°.J), P (CategoryTheory.CategoryStruct.comp (π°.map i) f) - AlgebraicGeometry.IsLocalAtSource.mk π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (respectsIso : P.RespectsIso := by infer_instance) (iff_of_openCover' : β {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : X.OpenCover), P f β β (i : π°.J), P (CategoryTheory.CategoryStruct.comp (π°.map i) f)) : AlgebraicGeometry.IsLocalAtSource P - AlgebraicGeometry.HasAffineProperty.isLocalAtSource π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] (H : β {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [inst : AlgebraicGeometry.IsAffine Y] (π° : X.OpenCover), Q f β β (i : π°.J), Q (CategoryTheory.CategoryStruct.comp (π°.map i) f)) : AlgebraicGeometry.IsLocalAtSource P - AlgebraicGeometry.IsLocalAtTarget.of_openCover π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [hP : AlgebraicGeometry.IsLocalAtTarget P] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (π° : Y.OpenCover) (H : β (i : π°.1), P (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i)) : P f - AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [hP : AlgebraicGeometry.IsLocalAtTarget P] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (π° : Y.OpenCover) : P f β β (i : π°.1), P (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i) - AlgebraicGeometry.IsLocalAtTarget.iff_of_openCover' π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} [self : AlgebraicGeometry.IsLocalAtTarget P] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) : P f β β (i : π°.1), P (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i) - AlgebraicGeometry.IsLocalAtTarget.mk π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (respectsIso : P.RespectsIso := by infer_instance) (iff_of_openCover' : β {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover), P f β β (i : π°.1), P (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i)) : AlgebraicGeometry.IsLocalAtTarget P - AlgebraicGeometry.HasAffineProperty.of_openCover π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (π° : Y.OpenCover) [β (i : π°.J), AlgebraicGeometry.IsAffine (π°.obj i)] (hπ° : β (i : π°.1), Q (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i)) : P f - AlgebraicGeometry.HasAffineProperty.iff_of_openCover π Mathlib.AlgebraicGeometry.Morphisms.Basic
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} (π° : Y.OpenCover) [β (i : π°.J), AlgebraicGeometry.IsAffine (π°.obj i)] : P f β β (i : π°.1), Q (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i) - AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover_diagonal π Mathlib.AlgebraicGeometry.Morphisms.Constructors
(P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) [β (i : π°.J), AlgebraicGeometry.IsAffine (π°.obj i)] (hπ° : β (i : π°.1), Q.diagonal (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i)) : P.diagonal f - AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover π Mathlib.AlgebraicGeometry.Morphisms.Constructors
(P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] {X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) (π° : Y.OpenCover) [β (i : π°.J), AlgebraicGeometry.IsAffine (π°.obj i)] (π°' : (i : π°.J) β (CategoryTheory.Limits.pullback f (π°.map i)).OpenCover) [β (i : π°.J) (j : (π°' i).J), AlgebraicGeometry.IsAffine ((π°' i).obj j)] (hπ°' : β (i : π°.J) (j k : (π°' i).J), Q (CategoryTheory.Limits.pullback.mapDesc ((π°' i).map j) ((π°' i).map k) (AlgebraicGeometry.Scheme.Cover.pullbackHom π° f i))) : P.diagonal f - AlgebraicGeometry.instSurjectiveDescJSchemeMap π Mathlib.AlgebraicGeometry.Morphisms.UnderlyingMap
{X : AlgebraicGeometry.Scheme} {P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) : AlgebraicGeometry.Surjective (CategoryTheory.Limits.Sigma.desc fun i => π°.map i) - AlgebraicGeometry.HasRingHomProperty.of_source_openCover π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} [AlgebraicGeometry.HasRingHomProperty P Q] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} [AlgebraicGeometry.IsAffine Y] (π° : X.OpenCover) [β (i : π°.J), AlgebraicGeometry.IsAffine (π°.obj i)] (H : β (i : π°.J), Q (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appTop (CategoryTheory.CategoryStruct.comp (π°.map i) f)))) : P f - AlgebraicGeometry.HasRingHomProperty.iff_of_source_openCover π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {Q : {R S : Type u} β [inst : CommRing R] β [inst_1 : CommRing S] β (R β+* S) β Prop} [AlgebraicGeometry.HasRingHomProperty P Q] {X Y : AlgebraicGeometry.Scheme} {f : X βΆ Y} [AlgebraicGeometry.IsAffine Y] (π° : X.OpenCover) [β (i : π°.J), AlgebraicGeometry.IsAffine (π°.obj i)] : P f β β (i : π°.J), Q (CommRingCat.Hom.hom (AlgebraicGeometry.Scheme.Hom.appTop (CategoryTheory.CategoryStruct.comp (π°.map i) f))) - AlgebraicGeometry.Scheme.OpenCover.affineRefinement.eq_1 π Mathlib.AlgebraicGeometry.Morphisms.RingHomProperties
{X : AlgebraicGeometry.Scheme} (π€ : X.OpenCover) : π€.affineRefinement = { J := (AlgebraicGeometry.Scheme.Cover.bind π€ fun j => (π€.obj j).affineCover).J, obj := fun j => β―.choose, map := (AlgebraicGeometry.Scheme.Cover.bind π€ fun j => (π€.obj j).affineCover).map, f := (AlgebraicGeometry.Scheme.Cover.bind π€ fun j => (π€.obj j).affineCover).f, covers := β―, map_prop := β― } - AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp π Mathlib.AlgebraicGeometry.IdealSheaf.Basic
{X Y : AlgebraicGeometry.Scheme} (f : X βΆ Y) [AlgebraicGeometry.QuasiCompact f] (π° : X.OpenCover) : β¨ i, AlgebraicGeometry.Scheme.Hom.ker (CategoryTheory.CategoryStruct.comp (π°.map i) f) = AlgebraicGeometry.Scheme.Hom.ker f - AlgebraicGeometry.Scheme.Hom.iUnion_support_ker_openCover_map_comp π Mathlib.AlgebraicGeometry.IdealSheaf.Basic
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [AlgebraicGeometry.QuasiCompact f] (π° : X.OpenCover) [Finite π°.J] : β i, β(AlgebraicGeometry.Scheme.Hom.ker (CategoryTheory.CategoryStruct.comp (π°.map i) f)).support = βf.ker.support - AlgebraicGeometry.Scheme.Hom.iInf_ker_openCover_map_comp_apply π Mathlib.AlgebraicGeometry.IdealSheaf.Basic
{X Y : AlgebraicGeometry.Scheme} (f : X.Hom Y) [AlgebraicGeometry.QuasiCompact f] (π° : X.OpenCover) (U : βY.affineOpens) : β¨ i, (AlgebraicGeometry.Scheme.Hom.ker (CategoryTheory.CategoryStruct.comp (π°.map i) f)).ideal U = f.ker.ideal U - AlgebraicGeometry.Scheme.Cover.Over.isOver_map π Mathlib.AlgebraicGeometry.Cover.Over
{S : AlgebraicGeometry.Scheme} {P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} {instβ : X.Over S} {π° : AlgebraicGeometry.Scheme.Cover P X} [self : AlgebraicGeometry.Scheme.Cover.Over S π°] (j : π°.J) : AlgebraicGeometry.Scheme.Hom.IsOver (π°.map j) S - AlgebraicGeometry.Scheme.Cover.Over.mk π Mathlib.AlgebraicGeometry.Cover.Over
{S : AlgebraicGeometry.Scheme} {P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} {X : AlgebraicGeometry.Scheme} [X.Over S] {π° : AlgebraicGeometry.Scheme.Cover P X} (over : (j : π°.J) β (π°.obj j).Over S := by infer_instance) (isOver_map : β (j : π°.J), AlgebraicGeometry.Scheme.Hom.IsOver (π°.map j) S := by infer_instance) : AlgebraicGeometry.Scheme.Cover.Over S π° - AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_obj π Mathlib.AlgebraicGeometry.Cover.Over
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (S : AlgebraicGeometry.Scheme) [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [W.Over S] [X.Over S] [AlgebraicGeometry.Scheme.Cover.Over S π°] [AlgebraicGeometry.Scheme.Hom.IsOver f S] (x : π°.J) : (AlgebraicGeometry.Scheme.Cover.pullbackCoverOver' S π° f).obj x = (CategoryTheory.Limits.pullback (AlgebraicGeometry.Scheme.Hom.asOver (π°.map x) S) (AlgebraicGeometry.Scheme.Hom.asOver f S)).left - AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_obj π Mathlib.AlgebraicGeometry.Cover.Over
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (S : AlgebraicGeometry.Scheme) [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [W.Over S] [X.Over S] [AlgebraicGeometry.Scheme.Cover.Over S π°] [AlgebraicGeometry.Scheme.Hom.IsOver f S] (x : π°.J) : (AlgebraicGeometry.Scheme.Cover.pullbackCoverOver S π° f).obj x = (CategoryTheory.Limits.pullback (AlgebraicGeometry.Scheme.Hom.asOver f S) (AlgebraicGeometry.Scheme.Hom.asOver (π°.map x) S)).left - AlgebraicGeometry.Scheme.Cover.pullbackCoverOver'_map π Mathlib.AlgebraicGeometry.Cover.Over
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (S : AlgebraicGeometry.Scheme) [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [W.Over S] [X.Over S] [AlgebraicGeometry.Scheme.Cover.Over S π°] [AlgebraicGeometry.Scheme.Hom.IsOver f S] (x : π°.J) : (AlgebraicGeometry.Scheme.Cover.pullbackCoverOver' S π° f).map x = (CategoryTheory.Limits.pullback.snd (AlgebraicGeometry.Scheme.Hom.asOver (π°.map x) S) (AlgebraicGeometry.Scheme.Hom.asOver f S)).left - AlgebraicGeometry.Scheme.Cover.pullbackCoverOver_map π Mathlib.AlgebraicGeometry.Cover.Over
{P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} (S : AlgebraicGeometry.Scheme) [P.IsStableUnderBaseChange] [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] {X W : AlgebraicGeometry.Scheme} (π° : AlgebraicGeometry.Scheme.Cover P X) (f : W βΆ X) [W.Over S] [X.Over S] [AlgebraicGeometry.Scheme.Cover.Over S π°] [AlgebraicGeometry.Scheme.Hom.IsOver f S] (x : π°.J) : (AlgebraicGeometry.Scheme.Cover.pullbackCoverOver S π° f).map x = (CategoryTheory.Limits.pullback.fst (AlgebraicGeometry.Scheme.Hom.asOver f S) (AlgebraicGeometry.Scheme.Hom.asOver (π°.map x) S)).left
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65