Loogle!
Result
Found 10 declarations mentioning AlgebraicTopology.DoldKan.Γ₀.Obj.map.
- AlgebraicTopology.DoldKan.Γ₀.Obj.map 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasFiniteCoproducts C] (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategoryᵒᵖ} (θ : Δ ⟶ Δ') : AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂ K Δ ⟶ AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂ K Δ' - AlgebraicTopology.DoldKan.Γ₀.obj_map 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasFiniteCoproducts C] (K : ChainComplex C ℕ) {X✝ Y✝ : SimplexCategoryᵒᵖ} (θ : X✝ ⟶ Y✝) : (AlgebraicTopology.DoldKan.Γ₀.obj K).map θ = AlgebraicTopology.DoldKan.Γ₀.Obj.map K θ - AlgebraicTopology.DoldKan.Γ₀_obj_map 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasFiniteCoproducts C] (X : ChainComplex C ℕ) {X✝ Y✝ : SimplexCategoryᵒᵖ} (θ : X✝ ⟶ Y✝) : (AlgebraicTopology.DoldKan.Γ₀.obj X).map θ = AlgebraicTopology.DoldKan.Γ₀.Obj.map X θ - AlgebraicTopology.DoldKan.Γ₂_obj_X_map 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasFiniteCoproducts C] (P : CategoryTheory.Idempotents.Karoubi (ChainComplex C ℕ)) {X✝ Y✝ : SimplexCategoryᵒᵖ} (θ : X✝ ⟶ Y✝) : (AlgebraicTopology.DoldKan.Γ₂.obj P).X.map θ = AlgebraicTopology.DoldKan.Γ₀.Obj.map P.X θ - AlgebraicTopology.DoldKan.Γ₀.Obj.map.eq_1 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasFiniteCoproducts C] (K : ChainComplex C ℕ) {Δ' Δ : SimplexCategoryᵒᵖ} (θ : Δ ⟶ Δ') : AlgebraicTopology.DoldKan.Γ₀.Obj.map K θ = CategoryTheory.Limits.Sigma.desc fun A => CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono K (CategoryTheory.Limits.image.ι (CategoryTheory.CategoryStruct.comp θ.unop A.e))) (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ') (A.pull θ)) - AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀_assoc 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (K : ChainComplex C ℕ) [CategoryTheory.Limits.HasFiniteCoproducts C] {Δ Δ' : SimplexCategoryᵒᵖ} (A : SimplicialObject.Splitting.IndexSet Δ) {θ : Δ ⟶ Δ'} {Δ'' : SimplexCategory} {e : Opposite.unop Δ' ⟶ Δ''} {i : Δ'' ⟶ Opposite.unop A.fst} [CategoryTheory.Epi e] [CategoryTheory.Mono i] (fac : CategoryTheory.CategoryStruct.comp e i = CategoryTheory.CategoryStruct.comp θ.unop A.e) {Z : C} (h : AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂ K Δ' ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ) A) (CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.Obj.map K θ) h) = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono K i) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ') (SimplicialObject.Splitting.IndexSet.mk e)) h) - AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀ 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (K : ChainComplex C ℕ) [CategoryTheory.Limits.HasFiniteCoproducts C] {Δ Δ' : SimplexCategoryᵒᵖ} (A : SimplicialObject.Splitting.IndexSet Δ) {θ : Δ ⟶ Δ'} {Δ'' : SimplexCategory} {e : Opposite.unop Δ' ⟶ Δ''} {i : Δ'' ⟶ Opposite.unop A.fst} [CategoryTheory.Epi e] [CategoryTheory.Mono i] (fac : CategoryTheory.CategoryStruct.comp e i = CategoryTheory.CategoryStruct.comp θ.unop A.e) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ) A) (AlgebraicTopology.DoldKan.Γ₀.Obj.map K θ) = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono K i) (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ') (SimplicialObject.Splitting.IndexSet.mk e)) - AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀' 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (K : ChainComplex C ℕ) [CategoryTheory.Limits.HasFiniteCoproducts C] {Δ Δ' : SimplexCategoryᵒᵖ} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ) A) (AlgebraicTopology.DoldKan.Γ₀.Obj.map K θ) = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono K (CategoryTheory.Limits.image.ι (CategoryTheory.CategoryStruct.comp θ.unop A.e))) (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ') (A.pull θ)) - AlgebraicTopology.DoldKan.Γ₀.Obj.map_on_summand₀'_assoc 📋 Mathlib.AlgebraicTopology.DoldKan.FunctorGamma
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (K : ChainComplex C ℕ) [CategoryTheory.Limits.HasFiniteCoproducts C] {Δ Δ' : SimplexCategoryᵒᵖ} (A : SimplicialObject.Splitting.IndexSet Δ) (θ : Δ ⟶ Δ') {Z : C} (h : AlgebraicTopology.DoldKan.Γ₀.Obj.obj₂ K Δ' ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ) A) (CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.Obj.map K θ) h) = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.Γ₀.Obj.Termwise.mapMono K (CategoryTheory.Limits.image.ι (CategoryTheory.CategoryStruct.comp θ.unop A.e))) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.ι (AlgebraicTopology.DoldKan.Γ₀.Obj.summand K Δ') (A.pull θ)) h) - CategoryTheory.Idempotents.DoldKan.Γ_obj_map 📋 Mathlib.AlgebraicTopology.DoldKan.EquivalencePseudoabelian
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.IsIdempotentComplete C] [CategoryTheory.Limits.HasFiniteCoproducts C] (X : ChainComplex C ℕ) {X✝ Y✝ : SimplexCategoryᵒᵖ} (θ : X✝ ⟶ Y✝) : (CategoryTheory.Idempotents.DoldKan.Γ.obj X).map θ = AlgebraicTopology.DoldKan.Γ₀.Obj.map X θ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08