Loogle!
Result
Found 5 declarations mentioning AlgebraicTopology.NormalizedMooreComplex.map.
- AlgebraicTopology.NormalizedMooreComplex.map 📋 Mathlib.AlgebraicTopology.MooreComplex
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Abelian C] {X Y : CategoryTheory.SimplicialObject C} (f : X ⟶ Y) : AlgebraicTopology.NormalizedMooreComplex.obj X ⟶ AlgebraicTopology.NormalizedMooreComplex.obj Y - AlgebraicTopology.normalizedMooreComplex_map 📋 Mathlib.AlgebraicTopology.MooreComplex
(C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Abelian C] {X✝ Y✝ : CategoryTheory.SimplicialObject C} (f : X✝ ⟶ Y✝) : (AlgebraicTopology.normalizedMooreComplex C).map f = AlgebraicTopology.NormalizedMooreComplex.map f - AlgebraicTopology.NormalizedMooreComplex.map_f 📋 Mathlib.AlgebraicTopology.MooreComplex
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Abelian C] {X Y : CategoryTheory.SimplicialObject C} (f : X ⟶ Y) (n : ℕ) : (AlgebraicTopology.NormalizedMooreComplex.map f).f n = (AlgebraicTopology.NormalizedMooreComplex.objX Y n).factorThru (CategoryTheory.CategoryStruct.comp (AlgebraicTopology.NormalizedMooreComplex.objX X n).arrow (f.app (Opposite.op (SimplexCategory.mk n)))) ⋯ - AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality 📋 Mathlib.AlgebraicTopology.DoldKan.Normalized
{A : Type u_1} [CategoryTheory.Category.{u_2, u_1} A] [CategoryTheory.Abelian A] {X Y : CategoryTheory.SimplicialObject A} (f : X ⟶ Y) : CategoryTheory.CategoryStruct.comp (AlgebraicTopology.AlternatingFaceMapComplex.map f) (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex Y) = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex X) (AlgebraicTopology.NormalizedMooreComplex.map f) - AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex_naturality_assoc 📋 Mathlib.AlgebraicTopology.DoldKan.Normalized
{A : Type u_1} [CategoryTheory.Category.{u_2, u_1} A] [CategoryTheory.Abelian A] {X Y : CategoryTheory.SimplicialObject A} (f : X ⟶ Y) {Z : ChainComplex A ℕ} (h : AlgebraicTopology.NormalizedMooreComplex.obj Y ⟶ Z) : CategoryTheory.CategoryStruct.comp (AlgebraicTopology.AlternatingFaceMapComplex.map f) (CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex Y) h) = CategoryTheory.CategoryStruct.comp (AlgebraicTopology.DoldKan.PInftyToNormalizedMooreComplex X) (CategoryTheory.CategoryStruct.comp (AlgebraicTopology.NormalizedMooreComplex.map f) h)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65