Loogle!
Result
Found 40 declarations mentioning Basis.map.
- Basis.map ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ฮน R M) (f : M โโ[R] M') : Basis ฮน R M' - Basis.map_equiv ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน' : Type u_2} {M' : Type u_7} [AddCommMonoid M'] {ฮน : Type u_10} {R : Type u_11} {M : Type u_12} [Semiring R] [AddCommMonoid M] [Module R M] [Module R M'] (b : Basis ฮน R M) (b' : Basis ฮน' R M') (e : ฮน โ ฮน') : b.map (b.equiv b' e) = b'.reindex e.symm - Basis.map_apply ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ฮน R M) (f : M โโ[R] M') (i : ฮน) : (b.map f) i = f (b i) - Basis.coe_map ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ฮน R M) (f : M โโ[R] M') : โ(b.map f) = โf โ โb - Basis.map_repr ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ฮน R M) (f : M โโ[R] M') : (b.map f).repr = f.symm โชโซโ b.repr - Basis.map_equivFun ๐ Mathlib.LinearAlgebra.Basis.Defs
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] [Finite ฮน] (b : Basis ฮน R M) (f : M โโ[R] M') : (b.map f).equivFun = f.symm โชโซโ b.equivFun - Basis.tensorProduct.eq_1 ๐ Mathlib.LinearAlgebra.TensorProduct.Basis
{R : Type u_1} {S : Type u_2} {M : Type u_3} {N : Type u_4} {ฮน : Type u_5} {ฮบ : Type u_6} [CommSemiring R] [Semiring S] [Algebra R S] [AddCommMonoid M] [Module R M] [Module S M] [IsScalarTower R S M] [AddCommMonoid N] [Module R N] (b : Basis ฮน S M) (c : Basis ฮบ R N) : b.tensorProduct c = Finsupp.basisSingleOne.map (TensorProduct.AlgebraTensorModule.congr b.repr c.repr โชโซโ (finsuppTensorFinsupp R S S R ฮน ฮบ โชโซโ Finsupp.lcongr (Equiv.refl (ฮน ร ฮบ)) (TensorProduct.AlgebraTensorModule.rid R S S))).symm - Basis.addSubgroupOfClosure.eq_1 ๐ Mathlib.LinearAlgebra.Basis.Submodule
{M : Type u_7} {R : Type u_8} [Ring R] [Nontrivial R] [NoZeroSMulDivisors โค R] [AddCommGroup M] [Module R M] (A : AddSubgroup M) {ฮน : Type u_9} (b : Basis ฮน R M) (h : A = AddSubgroup.closure (Set.range โb)) : Basis.addSubgroupOfClosure A b h = (Basis.restrictScalars โค b).map (LinearEquiv.ofEq (Submodule.span โค (Set.range โb)) (AddSubgroup.toIntSubmodule A) โฏ) - Basis.matrix.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.StdBasis
{ฮน : Type u_1} {R : Type u_2} {M : Type u_3} (m : Type u_4) (n : Type u_5) [Fintype m] [Fintype n] [Semiring R] [AddCommMonoid M] [Module R M] (b : Basis ฮน R M) : Basis.matrix m n b = ((Pi.basis fun x => Pi.basis fun x => b).reindex ((Equiv.sigmaEquivProd m ((_ : n) ร ฮน)).trans ((Equiv.refl m).prodCongr (Equiv.sigmaEquivProd n ฮน)))).map (Matrix.ofLinearEquiv R) - Matrix.stdBasis.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.StdBasis
(R : Type u_1) (m : Type u_2) (n : Type u_3) [Fintype m] [Finite n] [Semiring R] : Matrix.stdBasis R m n = ((Pi.basis fun x => Pi.basisFun R n).reindex (Equiv.sigmaEquivProd m n)).map (Matrix.ofLinearEquiv R) - Basis.smul_eq_map ๐ Mathlib.LinearAlgebra.Basis.SMul
{ฮน : Type u_1} {R : Type u_3} {M : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] (g : M โโ[R] M) (b : Basis ฮน R M) : g โข b = b.map g - Basis.linearMap.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.ToLin
{R : Type u_1} {Mโ : Type u_3} {Mโ : Type u_4} {ฮนโ : Type u_6} {ฮนโ : Type u_7} [CommSemiring R] [AddCommMonoid Mโ] [AddCommMonoid Mโ] [Module R Mโ] [Module R Mโ] [Fintype ฮนโ] [Fintype ฮนโ] [DecidableEq ฮนโ] (bโ : Basis ฮนโ R Mโ) (bโ : Basis ฮนโ R Mโ) : bโ.linearMap bโ = (Matrix.stdBasis R ฮนโ ฮนโ).map (LinearMap.toMatrix bโ bโ).symm - Basis.dualBasis.eq_1 ๐ Mathlib.LinearAlgebra.Dual.Basis
{R : Type uR} {M : Type uM} {ฮน : Type uฮน} [CommSemiring R] [AddCommMonoid M] [Module R M] [DecidableEq ฮน] (b : Basis ฮน R M) [Finite ฮน] : b.dualBasis = b.map b.toDualEquiv - Basis.map.eq_1 ๐ Mathlib.LinearAlgebra.Matrix.Basis
{ฮน : Type u_1} {R : Type u_3} {M : Type u_6} {M' : Type u_7} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid M'] [Module R M'] (b : Basis ฮน R M) (f : M โโ[R] M') : b.map f = { repr := f.symm โชโซโ b.repr } - Basis.toMatrix_map ๐ Mathlib.LinearAlgebra.Matrix.Basis
{ฮน : Type u_1} {R : Type u_5} {M : Type u_6} [CommSemiring R] [AddCommMonoid M] [Module R M] {N : Type u_9} [AddCommMonoid N] [Module R N] (b : Basis ฮน R M) (f : M โโ[R] N) (v : ฮน โ N) : (b.map f).toMatrix v = b.toMatrix (โf.symm โ v) - Basis.det_map' ๐ Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ฮน : Type u_4} [DecidableEq ฮน] [Fintype ฮน] (b : Basis ฮน R M) (f : M โโ[R] M') : (b.map f).det = b.det.compLinearMap โf.symm - Basis.det_map ๐ Mathlib.LinearAlgebra.Determinant
{R : Type u_1} [CommRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {M' : Type u_3} [AddCommGroup M'] [Module R M'] {ฮน : Type u_4} [DecidableEq ฮน] [Fintype ฮน] (b : Basis ฮน R M) (f : M โโ[R] M') (v : ฮน โ M') : (b.map f).det v = b.det (โf.symm โ v) - LinearMap.BilinForm.dualBasis.eq_1 ๐ Mathlib.LinearAlgebra.BilinearForm.Properties
{V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ฮน : Type u_9} [DecidableEq ฮน] [Finite ฮน] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Basis ฮน K V) : B.dualBasis hB b = b.dualBasis.map (B.toDual hB).symm - PowerBasis.map_basis ๐ Mathlib.RingTheory.PowerBasis
{R : Type u_1} {S : Type u_2} [CommRing R] [Ring S] [Algebra R S] {S' : Type u_7} [CommRing S'] [Algebra R S'] (pb : PowerBasis R S) (e : S โโ[R] S') : (pb.map e).basis = pb.basis.map e.toLinearEquiv - IntermediateField.powerBasisAux.eq_1 ๐ Mathlib.FieldTheory.IntermediateField.Adjoin.Basic
{K : Type u} [Field K] {L : Type u_3} [Field L] [Algebra K L] {x : L} (hx : IsIntegral K x) : IntermediateField.powerBasisAux hx = ((AdjoinRoot.powerBasis โฏ).basis.map (IntermediateField.adjoinRootEquivAdjoin K hx).toLinearEquiv).reindex (finCongr โฏ) - Orthonormal.mapLinearIsometryEquiv ๐ Mathlib.Analysis.InnerProductSpace.Orthonormal
{๐ : Type u_1} {E : Type u_2} [RCLike ๐] [SeminormedAddCommGroup E] [InnerProductSpace ๐ E] {ฮน : Type u_4} {E' : Type u_7} [SeminormedAddCommGroup E'] [InnerProductSpace ๐ E'] {v : Basis ฮน ๐ E} (hv : Orthonormal ๐ โv) (f : E โโแตข[๐] E') : Orthonormal ๐ โ(v.map f.toLinearEquiv) - Orthonormal.map_equiv ๐ Mathlib.Analysis.InnerProductSpace.Orthonormal
{๐ : Type u_1} {E : Type u_2} [RCLike ๐] [SeminormedAddCommGroup E] [InnerProductSpace ๐ E] {ฮน : Type u_4} {ฮน' : Type u_5} {E' : Type u_7} [SeminormedAddCommGroup E'] [InnerProductSpace ๐ E'] {v : Basis ฮน ๐ E} (hv : Orthonormal ๐ โv) {v' : Basis ฮน' ๐ E'} (hv' : Orthonormal ๐ โv') (e : ฮน โ ฮน') : v.map (hv.equiv hv' e).toLinearEquiv = v'.reindex e.symm - PiLp.basisFun_map ๐ Mathlib.Analysis.Normed.Lp.PiLp
(p : ENNReal) (๐ : Type u_1) (ฮน : Type u_2) [Finite ฮน] [Ring ๐] : (PiLp.basisFun p ๐ ฮน).map (WithLp.linearEquiv p ๐ (ฮน โ ๐)) = Pi.basisFun ๐ ฮน - PiLp.basisFun_eq_pi_basisFun ๐ Mathlib.Analysis.Normed.Lp.PiLp
(p : ENNReal) (๐ : Type u_1) (ฮน : Type u_2) [Finite ฮน] [Ring ๐] : PiLp.basisFun p ๐ ฮน = (Pi.basisFun ๐ ฮน).map (WithLp.linearEquiv p ๐ (ฮน โ ๐)).symm - OrthonormalBasis.toBasis_map ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮน : Type u_1} {๐ : Type u_3} [RCLike ๐] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace ๐ E] [Fintype ฮน] {G : Type u_7} [NormedAddCommGroup G] [InnerProductSpace ๐ G] (b : OrthonormalBasis ฮน ๐ E) (L : E โโแตข[๐] G) : (b.map L).toBasis = b.toBasis.map L.toLinearEquiv - Pi.orthonormalBasis.toBasis ๐ Mathlib.Analysis.InnerProductSpace.PiL2
{ฮท : Type u_7} [Fintype ฮท] {ฮน : ฮท โ Type u_8} [(i : ฮท) โ Fintype (ฮน i)] {๐ : Type u_9} [RCLike ๐] {E : ฮท โ Type u_10} [(i : ฮท) โ NormedAddCommGroup (E i)] [(i : ฮท) โ InnerProductSpace ๐ (E i)] (B : (i : ฮท) โ OrthonormalBasis (ฮน i) ๐ (E i)) : (Pi.orthonormalBasis B).toBasis = (Pi.basis fun i => (B i).toBasis).map (WithLp.linearEquiv 2 ๐ ((j : ฮท) โ E j)).symm - Basis.parallelepiped_map ๐ Mathlib.MeasureTheory.Measure.Haar.OfBasis
{ฮน : Type u_1} {E : Type u_3} {F : Type u_4} [Fintype ฮน] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace โ E] [NormedSpace โ F] (b : Basis ฮน โ E) (e : E โโ[โ] F) : (b.map e).parallelepiped = TopologicalSpace.PositiveCompacts.map โe โฏ โฏ b.parallelepiped - Basis.map_addHaar ๐ Mathlib.MeasureTheory.Measure.Lebesgue.EqHaar
{ฮน : Type u_1} {E : Type u_2} {F : Type u_3} [Fintype ฮน] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedSpace โ E] [NormedSpace โ F] [MeasurableSpace E] [MeasurableSpace F] [BorelSpace E] [BorelSpace F] [SecondCountableTopology F] [SigmaCompactSpace F] (b : Basis ฮน โ E) (f : E โL[โ] F) : MeasureTheory.Measure.map (โf) b.addHaar = (b.map f.toLinearEquiv).addHaar - ZSpan.map_fundamentalDomain ๐ Mathlib.Algebra.Module.ZLattice.Basic
{E : Type u_1} {ฮน : Type u_2} {K : Type u_3} [NormedField K] [NormedAddCommGroup E] [NormedSpace K E] (b : Basis ฮน K E) [LinearOrder K] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace K F] (f : E โโ[K] F) : โf '' ZSpan.fundamentalDomain b = ZSpan.fundamentalDomain (b.map f) - ZSpan.map ๐ Mathlib.Algebra.Module.ZLattice.Basic
{E : Type u_1} {ฮน : Type u_2} {K : Type u_3} [NormedField K] [NormedAddCommGroup E] [NormedSpace K E] (b : Basis ฮน K E) {F : Type u_4} [AddCommGroup F] [Module K F] (f : E โโ[K] F) : Submodule.map (LinearEquiv.restrictScalars โค f) (Submodule.span โค (Set.range โb)) = Submodule.span โค (Set.range โ(b.map f)) - Basis.ofZLatticeBasis_comap ๐ Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] [LinearOrder K] [IsStrictOrderedRing K] [HasSolidNorm K] [FloorRing K] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace K E] [FiniteDimensional K E] [ProperSpace E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace K F] [FiniteDimensional K F] [ProperSpace F] (L : Submodule โค E) [DiscreteTopology โฅL] [IsZLattice K L] (e : F โL[K] E) {ฮน : Type u_4} (b : Basis ฮน โค โฅL) : Basis.ofZLatticeBasis K (ZLattice.comap K L โe.toLinearEquiv) (Basis.ofZLatticeComap K L e.toLinearEquiv b) = (Basis.ofZLatticeBasis K L b).map e.symm.toLinearEquiv - Basis.ofZLatticeComap.eq_1 ๐ Mathlib.Algebra.Module.ZLattice.Basic
(K : Type u_1) [NormedField K] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace K E] [NormedAddCommGroup F] [NormedSpace K F] (L : Submodule โค E) (e : F โโ[K] E) {ฮน : Type u_4} (b : Basis ฮน โค โฅL) : Basis.ofZLatticeComap K L e b = b.map (ZLattice.comap_equiv K L e) - Basis.orientation_map ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [PartialOrder R] [IsStrictOrderedRing R] {M : Type u_2} {N : Type u_3} [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] {ฮน : Type u_4} [Fintype ฮน] [DecidableEq ฮน] (e : Basis ฮน R M) (f : M โโ[R] N) : (e.map f).orientation = (Orientation.map ฮน f) e.orientation - Basis.orientation_comp_linearEquiv_eq_iff_det_pos ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_3} [Fintype ฮน] [DecidableEq ฮน] (e : Basis ฮน R M) (f : M โโ[R] M) : (e.map f).orientation = e.orientation โ 0 < LinearMap.det โf - Basis.orientation_comp_linearEquiv_eq_neg_iff_det_neg ๐ Mathlib.LinearAlgebra.Orientation
{R : Type u_1} [CommRing R] [LinearOrder R] [IsStrictOrderedRing R] {M : Type u_2} [AddCommGroup M] [Module R M] {ฮน : Type u_3} [Fintype ฮน] [DecidableEq ฮน] (e : Basis ฮน R M) (f : M โโ[R] M) : (e.map f).orientation = -e.orientation โ LinearMap.det โf < 0 - Algebra.SubmersivePresentation.basisDeriv.eq_1 ๐ Mathlib.RingTheory.Smooth.StandardSmooth
{R : Type u} {S : Type v} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) : P.basisDeriv = (Pi.basisFun S P.rels).map P.aevalDifferentialEquiv - Algebra.SubmersivePresentation.basisCotangent.eq_1 ๐ Mathlib.RingTheory.Smooth.StandardSmoothCotangent
{R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] (P : Algebra.SubmersivePresentation R S) : P.basisCotangent = P.basisDeriv.map P.cotangentEquiv.symm - Ideal.basisSpanSingleton.eq_1 ๐ Mathlib.RingTheory.Ideal.Basis
{ฮน : Type u_1} {R : Type u_2} {S : Type u_3} [CommSemiring R] [CommRing S] [IsDomain S] [Algebra R S] (b : Basis ฮน R S) {x : S} (hx : x โ 0) : Ideal.basisSpanSingleton b hx = b.map (((LinearEquiv.ofInjective (LinearMap.mulLeft R x) โฏ).trans (LinearEquiv.ofEq (LinearMap.range (LinearMap.mulLeft R x)) (Submodule.restrictScalars R (Ideal.span {x})) โฏ)).trans (LinearEquiv.restrictScalars R (Submodule.restrictScalarsEquiv R S S (Ideal.span {x})))) - NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq ๐ Mathlib.NumberTheory.NumberField.CanonicalEmbedding.Basic
(K : Type u_1) [Field K] [NumberField K] : (NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis K).toBasis.map (NumberField.mixedEmbedding.euclidean.toMixed K).toLinearEquiv = NumberField.mixedEmbedding.stdBasis K - NumberField.Units.basisUnitLattice.eq_1 ๐ Mathlib.NumberTheory.NumberField.Units.DirichletTheorem
(K : Type u_1) [Field K] [NumberField K] : NumberField.Units.basisUnitLattice K = (NumberField.Units.basisModTorsion K).map (NumberField.Units.logEmbeddingEquiv K)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65