Loogle!
Result
Found 12 declarations mentioning Behrend.map.
- Behrend.map 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n : ℕ} (d : ℕ) : (Fin n → ℕ) →+ ℕ - Behrend.map_monotone 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n : ℕ} (d : ℕ) : Monotone ⇑(Behrend.map d) - Behrend.map_injOn 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n d : ℕ} : Set.InjOn ⇑(Behrend.map d) {x | ∀ (i : Fin n), x i < d} - Behrend.threeAPFree_image_sphere 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n d k : ℕ} : ThreeAPFree ↑(Finset.image (⇑(Behrend.map (2 * d - 1))) (Behrend.sphere n d k)) - Behrend.map_apply 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n : ℕ} (d : ℕ) (a : Fin n → ℕ) : (Behrend.map d) a = ∑ i, a i * d ^ ↑i - Behrend.map_mod 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n d : ℕ} (a : Fin n.succ → ℕ) : (Behrend.map d) a % d = a 0 % d - Behrend.map_zero 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
(d : ℕ) (a : Fin 0 → ℕ) : (Behrend.map d) a = 0 - Behrend.map.eq_1 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n : ℕ} (d : ℕ) : Behrend.map d = { toFun := fun a => ∑ i, a i * d ^ ↑i, map_zero' := ⋯, map_add' := ⋯ } - Behrend.map_le_of_mem_box 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n d : ℕ} {x : Fin n → ℕ} (hx : x ∈ Behrend.box n d) : (Behrend.map (2 * d - 1)) x ≤ ∑ i, (d - 1) * (2 * d - 1) ^ ↑i - Behrend.map_succ 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n d : ℕ} (a : Fin (n + 1) → ℕ) : (Behrend.map d) a = a 0 + (∑ x, a x.succ * d ^ ↑x) * d - Behrend.map_eq_iff 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n d : ℕ} {x₁ x₂ : Fin n.succ → ℕ} (hx₁ : ∀ (i : Fin n.succ), x₁ i < d) (hx₂ : ∀ (i : Fin n.succ), x₂ i < d) : (Behrend.map d) x₁ = (Behrend.map d) x₂ ↔ x₁ 0 = x₂ 0 ∧ (Behrend.map d) (x₁ ∘ Fin.succ) = (Behrend.map d) (x₂ ∘ Fin.succ) - Behrend.map_succ' 📋 Mathlib.Combinatorics.Additive.AP.Three.Behrend
{n d : ℕ} (a : Fin (n + 1) → ℕ) : (Behrend.map d) a = a 0 + (Behrend.map d) (a ∘ Fin.succ) * d
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65