Loogle!
Result
Found 65 declarations mentioning BoxIntegral.Prepartition.iUnion.
- BoxIntegral.Prepartition.iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Set (ΞΉ β β) - BoxIntegral.Prepartition.iUnion_subset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion β βI - BoxIntegral.Prepartition.IsPartition.iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.Prepartition I} (h : Ο.IsPartition) : Ο.iUnion = βI - BoxIntegral.Prepartition.isPartition_iff_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.Prepartition I} : Ο.IsPartition β Ο.iUnion = βI - BoxIntegral.Prepartition.iUnion_single π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} (h : J β€ I) : (BoxIntegral.Prepartition.single I J h).iUnion = βJ - BoxIntegral.Prepartition.iUnion_top π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} : β€.iUnion = βI - BoxIntegral.Prepartition.IsPartition.iUnion_subset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.Prepartition I} (h : Ο.IsPartition) (Οβ : BoxIntegral.Prepartition I) : Οβ.iUnion β Ο.iUnion - BoxIntegral.Prepartition.iUnion_bot π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} : β₯.iUnion = β - BoxIntegral.Prepartition.iUnion_mono π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ β€ Οβ) : Οβ.iUnion β Οβ.iUnion - BoxIntegral.Prepartition.subset_iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (h : J β Ο) : βJ β Ο.iUnion - BoxIntegral.Prepartition.iUnion_restrict π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : (Ο.restrict J).iUnion = βJ β© Ο.iUnion - BoxIntegral.Prepartition.iUnion_eq_empty π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ : BoxIntegral.Prepartition I} : Οβ.iUnion = β β Οβ = β₯ - BoxIntegral.Prepartition.iUnion_filter_not π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (p : BoxIntegral.Box ΞΉ β Prop) : (Ο.filter fun J => Β¬p J).iUnion = Ο.iUnion \ (Ο.filter p).iUnion - BoxIntegral.Prepartition.iUnion_inf π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) : (Οβ β Οβ).iUnion = Οβ.iUnion β© Οβ.iUnion - BoxIntegral.Prepartition.eq_of_boxes_subset_iUnion_superset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (hβ : Οβ.boxes β Οβ.boxes) (hβ : Οβ.iUnion β Οβ.iUnion) : Οβ = Οβ - BoxIntegral.Prepartition.iUnion_biUnion_partition π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) {Οi : (J : BoxIntegral.Box ΞΉ) β BoxIntegral.Prepartition J} (h : β J β Ο, (Οi J).IsPartition) : (Ο.biUnion Οi).iUnion = Ο.iUnion - BoxIntegral.Prepartition.iUnion_def π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion = β J β Ο, βJ - BoxIntegral.Prepartition.mem_iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) {x : ΞΉ β β} : x β Ο.iUnion β β J β Ο, x β J - BoxIntegral.Prepartition.iUnion.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion = β J β Ο, βJ - BoxIntegral.Prepartition.iUnion_def' π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion = β J β Ο.boxes, βJ - BoxIntegral.Prepartition.iUnion_biUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (Οi : (J : BoxIntegral.Box ΞΉ) β BoxIntegral.Prepartition J) : (Ο.biUnion Οi).iUnion = β J β Ο, (Οi J).iUnion - BoxIntegral.Prepartition.disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) (h : Disjoint Οβ.iUnion Οβ.iUnion) : BoxIntegral.Prepartition I - BoxIntegral.Prepartition.disjoint_boxes_of_disjoint_iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Disjoint Οβ.iUnion Οβ.iUnion) : Disjoint Οβ.boxes Οβ.boxes - BoxIntegral.Prepartition.le_iff_nonempty_imp_le_and_iUnion_subset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} : Οβ β€ Οβ β (β J β Οβ, β J' β Οβ, (βJ β© βJ').Nonempty β J β€ J') β§ Οβ.iUnion β Οβ.iUnion - BoxIntegral.Prepartition.distortion_disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} [Fintype ΞΉ] (h : Disjoint Οβ.iUnion Οβ.iUnion) : (Οβ.disjUnion Οβ h).distortion = max Οβ.distortion Οβ.distortion - BoxIntegral.Prepartition.iUnion_disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Disjoint Οβ.iUnion Οβ.iUnion) : (Οβ.disjUnion Οβ h).iUnion = Οβ.iUnion βͺ Οβ.iUnion - BoxIntegral.Prepartition.disjUnion_boxes π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) (h : Disjoint Οβ.iUnion Οβ.iUnion) : (Οβ.disjUnion Οβ h).boxes = Οβ.boxes βͺ Οβ.boxes - BoxIntegral.Prepartition.mem_disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (H : Disjoint Οβ.iUnion Οβ.iUnion) : J β Οβ.disjUnion Οβ H β J β Οβ β¨ J β Οβ - BoxIntegral.Prepartition.disjUnion.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) (h : Disjoint Οβ.iUnion Οβ.iUnion) : Οβ.disjUnion Οβ h = { boxes := Οβ.boxes βͺ Οβ.boxes, le_of_mem' := β―, pairwiseDisjoint := β― } - BoxIntegral.Prepartition.iUnion_ofWithBot π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (boxes : Finset (WithBot (BoxIntegral.Box ΞΉ))) (le_of_mem : β J β boxes, J β€ βI) (pairwise_disjoint : (βboxes).Pairwise Disjoint) : (BoxIntegral.Prepartition.ofWithBot boxes le_of_mem pairwise_disjoint).iUnion = β J β boxes, βJ - BoxIntegral.Prepartition.sum_disj_union_boxes π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} {M : Type u_2} [AddCommMonoid M] (h : Disjoint Οβ.iUnion Οβ.iUnion) (f : BoxIntegral.Box ΞΉ β M) : β J β Οβ.boxes βͺ Οβ.boxes, f J = β J β Οβ.boxes, f J + β J β Οβ.boxes, f J - BoxIntegral.Prepartition.isPartitionDisjUnionOfEqDiff π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = βI \ Οβ.iUnion) : (Οβ.disjUnion Οβ β―).IsPartition - BoxIntegral.TaggedPrepartition.iUnion_toPrepartition π Mathlib.Analysis.BoxIntegral.Partition.Tagged
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.TaggedPrepartition I) : Ο.iUnion = Ο.iUnion - BoxIntegral.TaggedPrepartition.iUnion_mk π Mathlib.Analysis.BoxIntegral.Partition.Tagged
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (f : BoxIntegral.Box ΞΉ β ΞΉ β β) (h : β (J : BoxIntegral.Box ΞΉ), f J β BoxIntegral.Box.Icc I) : { toPrepartition := Ο, tag := f, tag_mem_Icc := h }.iUnion = Ο.iUnion - BoxIntegral.Prepartition.iUnion_toSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Ο.toSubordinate r).iUnion = Ο.iUnion - BoxIntegral.TaggedPrepartition.unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : BoxIntegral.TaggedPrepartition I - BoxIntegral.TaggedPrepartition.isPartition_unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).IsPartition - BoxIntegral.TaggedPrepartition.iUnion_unionComplToSubordinate_boxes π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).iUnion = βI - BoxIntegral.TaggedPrepartition.distortion_unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).distortion = max Οβ.distortion Οβ.distortion - BoxIntegral.TaggedPrepartition.unionComplToSubordinate.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : Οβ.unionComplToSubordinate Οβ hU r = Οβ.disjUnion (Οβ.toSubordinate r) β― - BoxIntegral.Prepartition.exists_tagged_le_isHenstock_isSubordinate_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (r : (ΞΉ β β) β β(Set.Ioi 0)) (Ο : BoxIntegral.Prepartition I) : β Ο', Ο'.toPrepartition β€ Ο β§ Ο'.IsHenstock β§ Ο'.IsSubordinate r β§ Ο'.distortion = Ο.distortion β§ Ο'.iUnion = Ο.iUnion - BoxIntegral.TaggedPrepartition.unionComplToSubordinate_boxes π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).boxes = Οβ.boxes βͺ (Οβ.toSubordinate r).boxes - BoxIntegral.Prepartition.iUnion_split π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} (I : BoxIntegral.Box ΞΉ) (i : ΞΉ) (x : β) : (BoxIntegral.Prepartition.split I i x).iUnion = βI - BoxIntegral.Prepartition.iUnion_splitMany π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} (I : BoxIntegral.Box ΞΉ) (s : Finset (ΞΉ Γ β)) : (BoxIntegral.Prepartition.splitMany I s).iUnion = βI - BoxIntegral.Prepartition.iUnion_compl π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (Ο : BoxIntegral.Prepartition I) : Ο.compl.iUnion = βI \ Ο.iUnion - BoxIntegral.Prepartition.compl_congr π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = Οβ.iUnion) : Οβ.compl = Οβ.compl - BoxIntegral.Prepartition.exists_iUnion_eq_diff π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (Ο : BoxIntegral.Prepartition I) : β Ο', Ο'.iUnion = βI \ Ο.iUnion - BoxIntegral.Prepartition.eventually_splitMany_inf_eq_filter π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (Ο : BoxIntegral.Prepartition I) : βαΆ (t : Finset (ΞΉ Γ β)) in Filter.atTop, Ο β BoxIntegral.Prepartition.splitMany I t = (BoxIntegral.Prepartition.splitMany I t).filter fun J => βJ β Ο.iUnion - BoxIntegral.Prepartition.exists_splitMany_inf_eq_filter_of_finite π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (s : Set (BoxIntegral.Prepartition I)) (hs : s.Finite) : β t, β Ο β s, Ο β BoxIntegral.Prepartition.splitMany I t = (BoxIntegral.Prepartition.splitMany I t).filter fun J => βJ β Ο.iUnion - BoxIntegral.IntegrationParams.toFilteriUnion_congr π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (I : BoxIntegral.Box ΞΉ) (l : BoxIntegral.IntegrationParams) {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = Οβ.iUnion) : BoxIntegral.IntegrationParams.toFilteriUnion I Οβ = BoxIntegral.IntegrationParams.toFilteriUnion I Οβ - BoxIntegral.IntegrationParams.toFilter_inf_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (Οβ : BoxIntegral.Prepartition I) : l.toFilter I β Filter.principal {Ο | Ο.iUnion = Οβ.iUnion} = BoxIntegral.IntegrationParams.toFilteriUnion I Οβ - BoxIntegral.IntegrationParams.toFilterDistortioniUnion.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (c : NNReal) (Οβ : BoxIntegral.Prepartition I) : l.toFilterDistortioniUnion I c Οβ = l.toFilterDistortion I c β Filter.principal {Ο | Ο.iUnion = Οβ.iUnion} - BoxIntegral.IntegrationParams.hasBasis_toFilterDistortioniUnion π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (c : NNReal) (Οβ : BoxIntegral.Prepartition I) : (l.toFilterDistortioniUnion I c Οβ).HasBasis l.RCond fun r => {Ο | l.MemBaseSet I c r Ο β§ Ο.iUnion = Οβ.iUnion} - BoxIntegral.IntegrationParams.MemBaseSet.exists_compl π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {I : BoxIntegral.Box ΞΉ} {c : NNReal} {r : (ΞΉ β β) β β(Set.Ioi 0)} {Ο : BoxIntegral.TaggedPrepartition I} (self : l.MemBaseSet I c r Ο) : l.bDistortion = true β β Ο', Ο'.iUnion = βI \ Ο.iUnion β§ Ο'.distortion β€ c - BoxIntegral.IntegrationParams.exists_memBaseSet_le_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} {c : NNReal} (l : BoxIntegral.IntegrationParams) (Οβ : BoxIntegral.Prepartition I) (hcβ : Οβ.distortion β€ c) (hcβ : Οβ.compl.distortion β€ c) (r : (ΞΉ β β) β β(Set.Ioi 0)) : β Ο, l.MemBaseSet I c r Ο β§ Ο.toPrepartition β€ Οβ β§ Ο.iUnion = Οβ.iUnion - BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (Οβ : BoxIntegral.Prepartition I) : (BoxIntegral.IntegrationParams.toFilteriUnion I Οβ).HasBasis (fun r => β (c : NNReal), l.RCond (r c)) fun r => {Ο | β c, l.MemBaseSet I c (r c) Ο β§ Ο.iUnion = Οβ.iUnion} - BoxIntegral.IntegrationParams.MemBaseSet.mk π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {I : BoxIntegral.Box ΞΉ} {c : NNReal} {r : (ΞΉ β β) β β(Set.Ioi 0)} {Ο : BoxIntegral.TaggedPrepartition I} (isSubordinate : Ο.IsSubordinate r) (isHenstock : l.bHenstock = true β Ο.IsHenstock) (distortion_le : l.bDistortion = true β Ο.distortion β€ c) (exists_compl : l.bDistortion = true β β Ο', Ο'.iUnion = βI \ Ο.iUnion β§ Ο'.distortion β€ c) : l.MemBaseSet I c r Ο - BoxIntegral.IntegrationParams.MemBaseSet.exists_common_compl π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} {cβ cβ : NNReal} {l : BoxIntegral.IntegrationParams} {rβ rβ : (ΞΉ β β) β β(Set.Ioi 0)} {Οβ Οβ : BoxIntegral.TaggedPrepartition I} (hβ : l.MemBaseSet I cβ rβ Οβ) (hβ : l.MemBaseSet I cβ rβ Οβ) (hU : Οβ.iUnion = Οβ.iUnion) : β Ο, Ο.iUnion = βI \ Οβ.iUnion β§ (l.bDistortion = true β Ο.distortion β€ cβ) β§ (l.bDistortion = true β Ο.distortion β€ cβ) - BoxIntegral.TaggedPrepartition.unionComplToSubordinate.congr_simp π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ Οββ : BoxIntegral.TaggedPrepartition I) (e_Οβ : Οβ = Οββ) (Οβ Οββ : BoxIntegral.Prepartition I) (e_Οβ : Οβ = Οββ) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r rβ : (ΞΉ β β) β β(Set.Ioi 0)) (e_r : r = rβ) : Οβ.unionComplToSubordinate Οβ hU r = Οββ.unionComplToSubordinate Οββ β― rβ - BoxIntegral.IntegrationParams.MemBaseSet.unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} {c : NNReal} {l : BoxIntegral.IntegrationParams} {rβ rβ : (ΞΉ β β) β β(Set.Ioi 0)} {Οβ : BoxIntegral.TaggedPrepartition I} (hΟβ : l.MemBaseSet I c rβ Οβ) (hle : β x β BoxIntegral.Box.Icc I, rβ x β€ rβ x) {Οβ : BoxIntegral.Prepartition I} (hU : Οβ.iUnion = βI \ Οβ.iUnion) (hc : l.bDistortion = true β Οβ.distortion β€ c) : l.MemBaseSet I c rβ (Οβ.unionComplToSubordinate Οβ hU rβ) - BoxIntegral.Prepartition.disjUnion.congr_simp π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οββ : BoxIntegral.Prepartition I) (e_Οβ : Οβ = Οββ) (Οβ Οββ : BoxIntegral.Prepartition I) (e_Οβ : Οβ = Οββ) (h : Disjoint Οβ.iUnion Οβ.iUnion) : Οβ.disjUnion Οβ h = Οββ.disjUnion Οββ β― - BoxIntegral.BoxAdditiveMap.sum_boxes_congr π Mathlib.Analysis.BoxIntegral.Partition.Additive
{ΞΉ : Type u_1} {M : Type u_2} [AddCommMonoid M] {Iβ : WithTop (BoxIntegral.Box ΞΉ)} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (f : BoxIntegral.BoxAdditiveMap ΞΉ M Iβ) (hI : βI β€ Iβ) {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = Οβ.iUnion) : β J β Οβ.boxes, f J = β J β Οβ.boxes, f J - BoxIntegral.Prepartition.measure_iUnion_toReal π Mathlib.Analysis.BoxIntegral.Partition.Measure
{ΞΉ : Type u_1} [Finite ΞΉ] {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (ΞΌ : MeasureTheory.Measure (ΞΉ β β)) [MeasureTheory.IsLocallyFiniteMeasure ΞΌ] : ΞΌ.real Ο.iUnion = β J β Ο.boxes, ΞΌ.real βJ - BoxIntegral.Integrable.sum_integral_congr π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) {Οβ Οβ : BoxIntegral.Prepartition I} (hU : Οβ.iUnion = Οβ.iUnion) : β J β Οβ.boxes, BoxIntegral.integral J l f vol = β J β Οβ.boxes, BoxIntegral.integral J l f vol - BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.TaggedPrepartition I} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {c : NNReal} {Ξ΅ : β} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (h0 : 0 < Ξ΅) (hΟ : l.MemBaseSet I c (h.convergenceR Ξ΅ c) Ο) {Οβ : BoxIntegral.Prepartition I} (hU : Ο.iUnion = Οβ.iUnion) : dist (BoxIntegral.integralSum f vol Ο) (β J β Οβ.boxes, BoxIntegral.integral J l f vol) β€ Ξ΅
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision 78e98e0