Loogle!
Result
Found 63 definitions mentioning BoxIntegral.Prepartition.iUnion.
- BoxIntegral.Prepartition.iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Set (ΞΉ β β) - BoxIntegral.Prepartition.iUnion_subset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion β βI - BoxIntegral.Prepartition.IsPartition.iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.Prepartition I} (h : Ο.IsPartition) : Ο.iUnion = βI - BoxIntegral.Prepartition.isPartition_iff_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.Prepartition I} : Ο.IsPartition β Ο.iUnion = βI - BoxIntegral.Prepartition.iUnion_single π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} (h : J β€ I) : (BoxIntegral.Prepartition.single I J h).iUnion = βJ - BoxIntegral.Prepartition.iUnion_top π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} : β€.iUnion = βI - BoxIntegral.Prepartition.IsPartition.iUnion_subset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.Prepartition I} (h : Ο.IsPartition) (Οβ : BoxIntegral.Prepartition I) : Οβ.iUnion β Ο.iUnion - BoxIntegral.Prepartition.iUnion_bot π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} : β₯.iUnion = β - BoxIntegral.Prepartition.iUnion_mono π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ β€ Οβ) : Οβ.iUnion β Οβ.iUnion - BoxIntegral.Prepartition.subset_iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (h : J β Ο) : βJ β Ο.iUnion - BoxIntegral.Prepartition.iUnion_restrict π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : (Ο.restrict J).iUnion = βJ β© Ο.iUnion - BoxIntegral.Prepartition.iUnion_eq_empty π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ : BoxIntegral.Prepartition I} : Οβ.iUnion = β β Οβ = β₯ - BoxIntegral.Prepartition.iUnion_filter_not π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (p : BoxIntegral.Box ΞΉ β Prop) : (Ο.filter fun J => Β¬p J).iUnion = Ο.iUnion \ (Ο.filter p).iUnion - BoxIntegral.Prepartition.iUnion_inf π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) : (Οβ β Οβ).iUnion = Οβ.iUnion β© Οβ.iUnion - BoxIntegral.Prepartition.eq_of_boxes_subset_iUnion_superset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (hβ : Οβ.boxes β Οβ.boxes) (hβ : Οβ.iUnion β Οβ.iUnion) : Οβ = Οβ - BoxIntegral.Prepartition.iUnion_biUnion_partition π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) {Οi : (J : BoxIntegral.Box ΞΉ) β BoxIntegral.Prepartition J} (h : β J β Ο, (Οi J).IsPartition) : (Ο.biUnion Οi).iUnion = Ο.iUnion - BoxIntegral.Prepartition.iUnion_def π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion = β J β Ο, βJ - BoxIntegral.Prepartition.mem_iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) {x : ΞΉ β β} : x β Ο.iUnion β β J β Ο, x β J - BoxIntegral.Prepartition.iUnion.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion = β J β Ο, βJ - BoxIntegral.Prepartition.iUnion_def' π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) : Ο.iUnion = β J β Ο.boxes, βJ - BoxIntegral.Prepartition.iUnion_biUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (Οi : (J : BoxIntegral.Box ΞΉ) β BoxIntegral.Prepartition J) : (Ο.biUnion Οi).iUnion = β J β Ο, (Οi J).iUnion - BoxIntegral.Prepartition.disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) (h : Disjoint Οβ.iUnion Οβ.iUnion) : BoxIntegral.Prepartition I - BoxIntegral.Prepartition.disjoint_boxes_of_disjoint_iUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Disjoint Οβ.iUnion Οβ.iUnion) : Disjoint Οβ.boxes Οβ.boxes - BoxIntegral.Prepartition.le_iff_nonempty_imp_le_and_iUnion_subset π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} : Οβ β€ Οβ β (β J β Οβ, β J' β Οβ, (βJ β© βJ').Nonempty β J β€ J') β§ Οβ.iUnion β Οβ.iUnion - BoxIntegral.Prepartition.distortion_disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} [Fintype ΞΉ] (h : Disjoint Οβ.iUnion Οβ.iUnion) : (Οβ.disjUnion Οβ h).distortion = Οβ.distortion β Οβ.distortion - BoxIntegral.Prepartition.iUnion_disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Disjoint Οβ.iUnion Οβ.iUnion) : (Οβ.disjUnion Οβ h).iUnion = Οβ.iUnion βͺ Οβ.iUnion - BoxIntegral.Prepartition.disjUnion_boxes π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) (h : Disjoint Οβ.iUnion Οβ.iUnion) : (Οβ.disjUnion Οβ h).boxes = Οβ.boxes βͺ Οβ.boxes - BoxIntegral.Prepartition.mem_disjUnion π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I J : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (H : Disjoint Οβ.iUnion Οβ.iUnion) : J β Οβ.disjUnion Οβ H β J β Οβ β¨ J β Οβ - BoxIntegral.Prepartition.disjUnion.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Οβ Οβ : BoxIntegral.Prepartition I) (h : Disjoint Οβ.iUnion Οβ.iUnion) : Οβ.disjUnion Οβ h = { boxes := Οβ.boxes βͺ Οβ.boxes, le_of_mem' := β―, pairwiseDisjoint := β― } - BoxIntegral.Prepartition.iUnion_ofWithBot π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (boxes : Finset (WithBot (BoxIntegral.Box ΞΉ))) (le_of_mem : β J β boxes, J β€ βI) (pairwise_disjoint : (βboxes).Pairwise Disjoint) : (BoxIntegral.Prepartition.ofWithBot boxes le_of_mem pairwise_disjoint).iUnion = β J β boxes, βJ - BoxIntegral.Prepartition.sum_disj_union_boxes π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} {M : Type u_2} [AddCommMonoid M] (h : Disjoint Οβ.iUnion Οβ.iUnion) (f : BoxIntegral.Box ΞΉ β M) : β J β Οβ.boxes βͺ Οβ.boxes, f J = β J β Οβ.boxes, f J + β J β Οβ.boxes, f J - BoxIntegral.Prepartition.isPartitionDisjUnionOfEqDiff π Mathlib.Analysis.BoxIntegral.Partition.Basic
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = βI \ Οβ.iUnion) : (Οβ.disjUnion Οβ β―).IsPartition - BoxIntegral.TaggedPrepartition.iUnion_toPrepartition π Mathlib.Analysis.BoxIntegral.Partition.Tagged
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.TaggedPrepartition I) : Ο.iUnion = Ο.iUnion - BoxIntegral.TaggedPrepartition.iUnion_mk π Mathlib.Analysis.BoxIntegral.Partition.Tagged
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (f : BoxIntegral.Box ΞΉ β ΞΉ β β) (h : β (J : BoxIntegral.Box ΞΉ), f J β BoxIntegral.Box.Icc I) : { toPrepartition := Ο, tag := f, tag_mem_Icc := h }.iUnion = Ο.iUnion - BoxIntegral.Prepartition.iUnion_toSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Ο.toSubordinate r).iUnion = Ο.iUnion - BoxIntegral.TaggedPrepartition.unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : BoxIntegral.TaggedPrepartition I - BoxIntegral.TaggedPrepartition.isPartition_unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).IsPartition - BoxIntegral.TaggedPrepartition.iUnion_unionComplToSubordinate_boxes π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).iUnion = βI - BoxIntegral.TaggedPrepartition.distortion_unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).distortion = Οβ.distortion β Οβ.distortion - BoxIntegral.TaggedPrepartition.unionComplToSubordinate.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : Οβ.unionComplToSubordinate Οβ hU r = Οβ.disjUnion (Οβ.toSubordinate r) β― - BoxIntegral.Prepartition.exists_tagged_le_isHenstock_isSubordinate_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (r : (ΞΉ β β) β β(Set.Ioi 0)) (Ο : BoxIntegral.Prepartition I) : β Ο', Ο'.toPrepartition β€ Ο β§ Ο'.IsHenstock β§ Ο'.IsSubordinate r β§ Ο'.distortion = Ο.distortion β§ Ο'.iUnion = Ο.iUnion - BoxIntegral.TaggedPrepartition.unionComplToSubordinate_boxes π Mathlib.Analysis.BoxIntegral.Partition.SubboxInduction
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} (Οβ : BoxIntegral.TaggedPrepartition I) (Οβ : BoxIntegral.Prepartition I) (hU : Οβ.iUnion = βI \ Οβ.iUnion) (r : (ΞΉ β β) β β(Set.Ioi 0)) : (Οβ.unionComplToSubordinate Οβ hU r).boxes = Οβ.boxes βͺ (Οβ.toSubordinate r).boxes - BoxIntegral.Prepartition.iUnion_split π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} (I : BoxIntegral.Box ΞΉ) (i : ΞΉ) (x : β) : (BoxIntegral.Prepartition.split I i x).iUnion = βI - BoxIntegral.Prepartition.iUnion_splitMany π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} (I : BoxIntegral.Box ΞΉ) (s : Finset (ΞΉ Γ β)) : (BoxIntegral.Prepartition.splitMany I s).iUnion = βI - BoxIntegral.Prepartition.iUnion_compl π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (Ο : BoxIntegral.Prepartition I) : Ο.compl.iUnion = βI \ Ο.iUnion - BoxIntegral.Prepartition.compl_congr π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = Οβ.iUnion) : Οβ.compl = Οβ.compl - BoxIntegral.Prepartition.exists_iUnion_eq_diff π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (Ο : BoxIntegral.Prepartition I) : β Ο', Ο'.iUnion = βI \ Ο.iUnion - BoxIntegral.Prepartition.eventually_splitMany_inf_eq_filter π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (Ο : BoxIntegral.Prepartition I) : βαΆ (t : Finset (ΞΉ Γ β)) in Filter.atTop, Ο β BoxIntegral.Prepartition.splitMany I t = (BoxIntegral.Prepartition.splitMany I t).filter fun J => βJ β Ο.iUnion - BoxIntegral.Prepartition.exists_splitMany_inf_eq_filter_of_finite π Mathlib.Analysis.BoxIntegral.Partition.Split
{ΞΉ : Type u_1} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (s : Set (BoxIntegral.Prepartition I)) (hs : s.Finite) : β t, β Ο β s, Ο β BoxIntegral.Prepartition.splitMany I t = (BoxIntegral.Prepartition.splitMany I t).filter fun J => βJ β Ο.iUnion - BoxIntegral.IntegrationParams.toFilteriUnion_congr π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (I : BoxIntegral.Box ΞΉ) (l : BoxIntegral.IntegrationParams) {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = Οβ.iUnion) : BoxIntegral.IntegrationParams.toFilteriUnion I Οβ = BoxIntegral.IntegrationParams.toFilteriUnion I Οβ - BoxIntegral.IntegrationParams.toFilter_inf_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (Οβ : BoxIntegral.Prepartition I) : l.toFilter I β Filter.principal {Ο | Ο.iUnion = Οβ.iUnion} = BoxIntegral.IntegrationParams.toFilteriUnion I Οβ - BoxIntegral.IntegrationParams.toFilterDistortioniUnion.eq_1 π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (c : NNReal) (Οβ : BoxIntegral.Prepartition I) : l.toFilterDistortioniUnion I c Οβ = l.toFilterDistortion I c β Filter.principal {Ο | Ο.iUnion = Οβ.iUnion} - BoxIntegral.IntegrationParams.hasBasis_toFilterDistortioniUnion π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (c : NNReal) (Οβ : BoxIntegral.Prepartition I) : (l.toFilterDistortioniUnion I c Οβ).HasBasis l.RCond fun r => {Ο | l.MemBaseSet I c r Ο β§ Ο.iUnion = Οβ.iUnion} - BoxIntegral.IntegrationParams.MemBaseSet.exists_compl π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {I : BoxIntegral.Box ΞΉ} {c : NNReal} {r : (ΞΉ β β) β β(Set.Ioi 0)} {Ο : BoxIntegral.TaggedPrepartition I} (self : l.MemBaseSet I c r Ο) : l.bDistortion = true β β Ο', Ο'.iUnion = βI \ Ο.iUnion β§ Ο'.distortion β€ c - BoxIntegral.IntegrationParams.hasBasis_toFilteriUnion π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] (l : BoxIntegral.IntegrationParams) (I : BoxIntegral.Box ΞΉ) (Οβ : BoxIntegral.Prepartition I) : (BoxIntegral.IntegrationParams.toFilteriUnion I Οβ).HasBasis (fun r => β (c : NNReal), l.RCond (r c)) fun r => {Ο | β c, l.MemBaseSet I c (r c) Ο β§ Ο.iUnion = Οβ.iUnion} - BoxIntegral.IntegrationParams.exists_memBaseSet_le_iUnion_eq π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} {c : NNReal} (l : BoxIntegral.IntegrationParams) (Οβ : BoxIntegral.Prepartition I) (hcβ : Οβ.distortion β€ c) (hcβ : Οβ.compl.distortion β€ c) (r : (ΞΉ β β) β β(Set.Ioi 0)) : β Ο, l.MemBaseSet I c r Ο β§ Ο.toPrepartition β€ Οβ β§ Ο.iUnion = Οβ.iUnion - BoxIntegral.IntegrationParams.MemBaseSet.mk π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {I : BoxIntegral.Box ΞΉ} {c : NNReal} {r : (ΞΉ β β) β β(Set.Ioi 0)} {Ο : BoxIntegral.TaggedPrepartition I} (isSubordinate : Ο.IsSubordinate r) (isHenstock : l.bHenstock = true β Ο.IsHenstock) (distortion_le : l.bDistortion = true β Ο.distortion β€ c) (exists_compl : l.bDistortion = true β β Ο', Ο'.iUnion = βI \ Ο.iUnion β§ Ο'.distortion β€ c) : l.MemBaseSet I c r Ο - BoxIntegral.IntegrationParams.MemBaseSet.exists_common_compl π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} {cβ cβ : NNReal} {l : BoxIntegral.IntegrationParams} {rβ rβ : (ΞΉ β β) β β(Set.Ioi 0)} {Οβ Οβ : BoxIntegral.TaggedPrepartition I} (hβ : l.MemBaseSet I cβ rβ Οβ) (hβ : l.MemBaseSet I cβ rβ Οβ) (hU : Οβ.iUnion = Οβ.iUnion) : β Ο, Ο.iUnion = βI \ Οβ.iUnion β§ (l.bDistortion = true β Ο.distortion β€ cβ) β§ (l.bDistortion = true β Ο.distortion β€ cβ) - BoxIntegral.IntegrationParams.MemBaseSet.unionComplToSubordinate π Mathlib.Analysis.BoxIntegral.Partition.Filter
{ΞΉ : Type u_1} [Fintype ΞΉ] {I : BoxIntegral.Box ΞΉ} {c : NNReal} {l : BoxIntegral.IntegrationParams} {rβ rβ : (ΞΉ β β) β β(Set.Ioi 0)} {Οβ : BoxIntegral.TaggedPrepartition I} (hΟβ : l.MemBaseSet I c rβ Οβ) (hle : β x β BoxIntegral.Box.Icc I, rβ x β€ rβ x) {Οβ : BoxIntegral.Prepartition I} (hU : Οβ.iUnion = βI \ Οβ.iUnion) (hc : l.bDistortion = true β Οβ.distortion β€ c) : l.MemBaseSet I c rβ (Οβ.unionComplToSubordinate Οβ hU rβ) - BoxIntegral.BoxAdditiveMap.sum_boxes_congr π Mathlib.Analysis.BoxIntegral.Partition.Additive
{ΞΉ : Type u_1} {M : Type u_2} [AddCommMonoid M] {Iβ : WithTop (BoxIntegral.Box ΞΉ)} {I : BoxIntegral.Box ΞΉ} [Finite ΞΉ] (f : BoxIntegral.BoxAdditiveMap ΞΉ M Iβ) (hI : βI β€ Iβ) {Οβ Οβ : BoxIntegral.Prepartition I} (h : Οβ.iUnion = Οβ.iUnion) : β J β Οβ.boxes, f J = β J β Οβ.boxes, f J - BoxIntegral.Prepartition.measure_iUnion_toReal π Mathlib.Analysis.BoxIntegral.Partition.Measure
{ΞΉ : Type u_1} [Finite ΞΉ] {I : BoxIntegral.Box ΞΉ} (Ο : BoxIntegral.Prepartition I) (ΞΌ : MeasureTheory.Measure (ΞΉ β β)) [MeasureTheory.IsLocallyFiniteMeasure ΞΌ] : (ΞΌ Ο.iUnion).toReal = β J β Ο.boxes, (ΞΌ βJ).toReal - BoxIntegral.Integrable.sum_integral_congr π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) {Οβ Οβ : BoxIntegral.Prepartition I} (hU : Οβ.iUnion = Οβ.iUnion) : β J β Οβ.boxes, BoxIntegral.integral J l f vol = β J β Οβ.boxes, BoxIntegral.integral J l f vol - BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.TaggedPrepartition I} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {c : NNReal} {Ξ΅ : β} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (h0 : 0 < Ξ΅) (hΟ : l.MemBaseSet I c (h.convergenceR Ξ΅ c) Ο) {Οβ : BoxIntegral.Prepartition I} (hU : Ο.iUnion = Οβ.iUnion) : dist (BoxIntegral.integralSum f vol Ο) (β J β Οβ.boxes, BoxIntegral.integral J l f vol) β€ Ξ΅
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
woould find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 4e1aab0
serving mathlib revision b513113