Loogle!
Result
Found 16 declarations mentioning CategoryTheory.ComposableArrows.Precomp.map.
- CategoryTheory.ComposableArrows.Precomp.map π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (i j : Fin (n + 1 + 1)) : i β€ j β (CategoryTheory.ComposableArrows.Precomp.obj F X i βΆ CategoryTheory.ComposableArrows.Precomp.obj F X j) - CategoryTheory.ComposableArrows.Precomp.map_id π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (i : Fin (n + 1 + 1)) : CategoryTheory.ComposableArrows.Precomp.map F f i i β― = CategoryTheory.CategoryStruct.id (CategoryTheory.ComposableArrows.Precomp.obj F X i) - CategoryTheory.ComposableArrows.Precomp.map_comp π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) {i j k : Fin (n + 1 + 1)} (hij : i β€ j) (hjk : j β€ k) : CategoryTheory.ComposableArrows.Precomp.map F f i k β― = CategoryTheory.CategoryStruct.comp (CategoryTheory.ComposableArrows.Precomp.map F f i j hij) (CategoryTheory.ComposableArrows.Precomp.map F f j k hjk) - CategoryTheory.ComposableArrows.Precomp.map_succ_succ π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (i j : β) (hi : i + 1 < n + 1 + 1) (hj : j + 1 < n + 1 + 1) (hij : i + 1 β€ j + 1) : CategoryTheory.ComposableArrows.Precomp.map F f β¨i + 1, hiβ© β¨j + 1, hjβ© hij = F.map' i j β― β― - CategoryTheory.ComposableArrows.precomp_map π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) {Xβ Yβ : Fin (n + 1 + 1)} (g : Xβ βΆ Yβ) : (F.precomp f).map g = CategoryTheory.ComposableArrows.Precomp.map F f Xβ Yβ β― - CategoryTheory.ComposableArrows.Precomp.map_zero_one π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) : CategoryTheory.ComposableArrows.Precomp.map F f 0 1 β― = f - CategoryTheory.ComposableArrows.Precomp.map_zero_zero π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) : CategoryTheory.ComposableArrows.Precomp.map F f 0 0 β― = CategoryTheory.CategoryStruct.id X - CategoryTheory.ComposableArrows.Precomp.map_zero_succ_succ π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (j : β) (hj : j + 2 < n + 1 + 1) : CategoryTheory.ComposableArrows.Precomp.map F f 0 β¨j + 2, hjβ© β― = CategoryTheory.CategoryStruct.comp f (F.map' 0 (j + 1) β― β―) - CategoryTheory.ComposableArrows.Precomp.map_one_succ π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (j : β) (hj : j + 1 < n + 1 + 1) : CategoryTheory.ComposableArrows.Precomp.map F f 1 β¨j + 1, hjβ© β― = F.map' 0 j β― β― - CategoryTheory.ComposableArrows.Precomp.map_one_one π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) : CategoryTheory.ComposableArrows.Precomp.map F f 1 1 β― = F.map (CategoryTheory.CategoryStruct.id β¨0, β―β©) - CategoryTheory.ComposableArrows.Precomp.map_zero_one' π Mathlib.CategoryTheory.ComposableArrows
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) : CategoryTheory.ComposableArrows.Precomp.map F f 0 β¨0 + 1, β―β© β― = f - CategoryTheory.ShortComplex.toComposableArrows_map π Mathlib.Algebra.Homology.ExactSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) {Xβ Yβ : Fin (1 + 1 + 1)} (g : Xβ βΆ Yβ) : S.toComposableArrows.map g = CategoryTheory.ComposableArrows.Precomp.map (CategoryTheory.ComposableArrows.mkβ S.g) S.f Xβ Yβ β― - CategoryTheory.ComposableArrows.Precomp.map.eq_2 π Mathlib.CategoryTheory.Abelian.DiagramLemmas.Four
{C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (isLt : 0 < n + 1 + 1) (isLt_1 : 1 < n + 1 + 1) (x_3 : β¨0, isLtβ© β€ β¨1, isLt_1β©) : CategoryTheory.ComposableArrows.Precomp.map F f β¨0, isLtβ© β¨1, isLt_1β© x_3 = f - CategoryTheory.ComposableArrows.Precomp.map.eq_1 π Mathlib.CategoryTheory.Abelian.DiagramLemmas.Four
{C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (isLt isLt_1 : 0 < n + 1 + 1) (x_3 : β¨0, isLtβ© β€ β¨0, isLt_1β©) : CategoryTheory.ComposableArrows.Precomp.map F f β¨0, isLtβ© β¨0, isLt_1β© x_3 = CategoryTheory.CategoryStruct.id X - CategoryTheory.ComposableArrows.Precomp.map.eq_4 π Mathlib.CategoryTheory.Abelian.DiagramLemmas.Four
{C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (i : β) (hi : i + 1 < n + 1 + 1) (j : β) (hj : j + 1 < n + 1 + 1) (hij : β¨i + 1, hiβ© β€ β¨j + 1, hjβ©) : CategoryTheory.ComposableArrows.Precomp.map F f β¨i.succ, hiβ© β¨j.succ, hjβ© hij = F.map' i j β― β― - CategoryTheory.ComposableArrows.Precomp.map.eq_3 π Mathlib.CategoryTheory.Abelian.DiagramLemmas.Four
{C : Type u_1} [inst : CategoryTheory.Category.{u_2, u_1} C] {n : β} (F : CategoryTheory.ComposableArrows C n) {X : C} (f : X βΆ F.left) (isLt : 0 < n + 1 + 1) (j : β) (hj : j + 2 < n + 1 + 1) (x_3 : β¨0, isLtβ© β€ β¨j + 2, hjβ©) : CategoryTheory.ComposableArrows.Precomp.map F f β¨0, isLtβ© β¨j.succ.succ, hjβ© x_3 = CategoryTheory.CategoryStruct.comp f (F.map' 0 (j + 1) β― β―)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08