Loogle!
Result
Found 15 declarations mentioning CategoryTheory.EnrichedFunctor.map.
- CategoryTheory.EnrichedFunctor.id_map π Mathlib.CategoryTheory.Enriched.Basic
(V : Type v) [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] (C : Type uβ) [CategoryTheory.EnrichedCategory V C] (xβ xβΒΉ : C) : (CategoryTheory.EnrichedFunctor.id V C).map xβ xβΒΉ = CategoryTheory.CategoryStruct.id (CategoryTheory.EnrichedCategory.Hom xβ xβΒΉ) - CategoryTheory.EnrichedFunctor.map π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] (self : CategoryTheory.EnrichedFunctor V C D) (X Y : C) : CategoryTheory.EnrichedCategory.Hom X Y βΆ CategoryTheory.EnrichedCategory.Hom (self.obj X) (self.obj Y) - CategoryTheory.EnrichedFunctor.map_id π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] (self : CategoryTheory.EnrichedFunctor V C D) (X : C) : CategoryTheory.CategoryStruct.comp (CategoryTheory.eId V X) (self.map X X) = CategoryTheory.eId V (self.obj X) - CategoryTheory.enrichedFunctorTypeEquivFunctor_apply_map π Mathlib.CategoryTheory.Enriched.Basic
{C : Type uβ} [π : CategoryTheory.EnrichedCategory (Type v) C] {D : Type uβ} [π : CategoryTheory.EnrichedCategory (Type v) D] (F : CategoryTheory.EnrichedFunctor (Type v) C D) {Xβ Yβ : C} (f : Xβ βΆ Yβ) : (CategoryTheory.enrichedFunctorTypeEquivFunctor F).map f = F.map Xβ Yβ f - CategoryTheory.EnrichedFunctor.map_id_assoc π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] (self : CategoryTheory.EnrichedFunctor V C D) (X : C) {Z : V} (h : CategoryTheory.EnrichedCategory.Hom (self.obj X) (self.obj X) βΆ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.eId V X) (CategoryTheory.CategoryStruct.comp (self.map X X) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.eId V (self.obj X)) h - CategoryTheory.enrichedFunctorTypeEquivFunctor_symm_apply_map π Mathlib.CategoryTheory.Enriched.Basic
{C : Type uβ} [π : CategoryTheory.EnrichedCategory (Type v) C] {D : Type uβ} [π : CategoryTheory.EnrichedCategory (Type v) D] (F : CategoryTheory.Functor C D) (xβ xβΒΉ : C) (f : CategoryTheory.EnrichedCategory.Hom xβ xβΒΉ) : (CategoryTheory.enrichedFunctorTypeEquivFunctor.symm F).map xβ xβΒΉ f = F.map f - CategoryTheory.EnrichedFunctor.comp_map π Mathlib.CategoryTheory.Enriched.Basic
(V : Type v) [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} {D : Type uβ} {E : Type uβ} [CategoryTheory.EnrichedCategory V C] [CategoryTheory.EnrichedCategory V D] [CategoryTheory.EnrichedCategory V E] (F : CategoryTheory.EnrichedFunctor V C D) (G : CategoryTheory.EnrichedFunctor V D E) (xβ xβΒΉ : C) : (CategoryTheory.EnrichedFunctor.comp V F G).map xβ xβΒΉ = CategoryTheory.CategoryStruct.comp (F.map xβ xβΒΉ) (G.map (F.obj xβ) (F.obj xβΒΉ)) - CategoryTheory.EnrichedFunctor.map_comp π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] (self : CategoryTheory.EnrichedFunctor V C D) (X Y Z : C) : CategoryTheory.CategoryStruct.comp (CategoryTheory.eComp V X Y Z) (self.map X Z) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (self.map X Y) (self.map Y Z)) (CategoryTheory.eComp V (self.obj X) (self.obj Y) (self.obj Z)) - CategoryTheory.EnrichedFunctor.map_comp_assoc π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] (self : CategoryTheory.EnrichedFunctor V C D) (X Y Z : C) {Zβ : V} (h : CategoryTheory.EnrichedCategory.Hom (self.obj X) (self.obj Z) βΆ Zβ) : CategoryTheory.CategoryStruct.comp (CategoryTheory.eComp V X Y Z) (CategoryTheory.CategoryStruct.comp (self.map X Z) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (self.map X Y) (self.map Y Z)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.eComp V (self.obj X) (self.obj Y) (self.obj Z)) h) - CategoryTheory.GradedNatTrans.naturality π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] {A : CategoryTheory.Center V} {F G : CategoryTheory.EnrichedFunctor V C D} (self : CategoryTheory.GradedNatTrans A F G) (X Y : C) : CategoryTheory.CategoryStruct.comp (A.snd.Ξ² (CategoryTheory.EnrichedCategory.Hom X Y)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (F.map X Y) (self.app Y)) (CategoryTheory.eComp V (F.obj X) (F.obj Y) (G.obj Y))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (self.app X) (G.map X Y)) (CategoryTheory.eComp V (F.obj X) (G.obj X) (G.obj Y)) - CategoryTheory.GradedNatTrans.mk π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] {A : CategoryTheory.Center V} {F G : CategoryTheory.EnrichedFunctor V C D} (app : (X : C) β A.fst βΆ CategoryTheory.EnrichedCategory.Hom (F.obj X) (G.obj X)) (naturality : β (X Y : C), CategoryTheory.CategoryStruct.comp (A.snd.Ξ² (CategoryTheory.EnrichedCategory.Hom X Y)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (F.map X Y) (app Y)) (CategoryTheory.eComp V (F.obj X) (F.obj Y) (G.obj Y))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (app X) (G.map X Y)) (CategoryTheory.eComp V (F.obj X) (G.obj X) (G.obj Y))) : CategoryTheory.GradedNatTrans A F G - CategoryTheory.GradedNatTrans.mk.sizeOf_spec π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] {A : CategoryTheory.Center V} {F G : CategoryTheory.EnrichedFunctor V C D} [SizeOf V] [SizeOf C] [SizeOf D] (app : (X : C) β A.fst βΆ CategoryTheory.EnrichedCategory.Hom (F.obj X) (G.obj X)) (naturality : β (X Y : C), CategoryTheory.CategoryStruct.comp (A.snd.Ξ² (CategoryTheory.EnrichedCategory.Hom X Y)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (F.map X Y) (app Y)) (CategoryTheory.eComp V (F.obj X) (F.obj Y) (G.obj Y))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (app X) (G.map X Y)) (CategoryTheory.eComp V (F.obj X) (G.obj X) (G.obj Y))) : sizeOf { app := app, naturality := naturality } = 1 - CategoryTheory.EnrichedFunctor.ext π Mathlib.CategoryTheory.Enriched.Basic
(V : Type v) [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} {D : Type uβ} [CategoryTheory.EnrichedCategory V C] [CategoryTheory.EnrichedCategory V D] {F G : CategoryTheory.EnrichedFunctor V C D} (h_obj : β (X : C), F.obj X = G.obj X) (h_map : β (X Y : C), CategoryTheory.CategoryStruct.comp (F.map X Y) (CategoryTheory.eqToHom β―) = G.map X Y) : F = G - CategoryTheory.GradedNatTrans.mk.injEq π Mathlib.CategoryTheory.Enriched.Basic
{V : Type v} [CategoryTheory.Category.{w, v} V] [CategoryTheory.MonoidalCategory V] {C : Type uβ} [CategoryTheory.EnrichedCategory V C] {D : Type uβ} [CategoryTheory.EnrichedCategory V D] {A : CategoryTheory.Center V} {F G : CategoryTheory.EnrichedFunctor V C D} (app : (X : C) β A.fst βΆ CategoryTheory.EnrichedCategory.Hom (F.obj X) (G.obj X)) (naturality : β (X Y : C), CategoryTheory.CategoryStruct.comp (A.snd.Ξ² (CategoryTheory.EnrichedCategory.Hom X Y)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (F.map X Y) (app Y)) (CategoryTheory.eComp V (F.obj X) (F.obj Y) (G.obj Y))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (app X) (G.map X Y)) (CategoryTheory.eComp V (F.obj X) (G.obj X) (G.obj Y))) (appβ : (X : C) β A.fst βΆ CategoryTheory.EnrichedCategory.Hom (F.obj X) (G.obj X)) (naturalityβ : β (X Y : C), CategoryTheory.CategoryStruct.comp (A.snd.Ξ² (CategoryTheory.EnrichedCategory.Hom X Y)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (F.map X Y) (appβ Y)) (CategoryTheory.eComp V (F.obj X) (F.obj Y) (G.obj Y))) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (appβ X) (G.map X Y)) (CategoryTheory.eComp V (F.obj X) (G.obj X) (G.obj Y))) : ({ app := app, naturality := naturality } = { app := appβ, naturality := naturalityβ }) = (app = appβ) - CategoryTheory.SimplicialThickening.functor_map π Mathlib.AlgebraicTopology.SimplicialNerve
{J K : Type u} [LinearOrder J] [LinearOrder K] (f : J βo K) (i j : CategoryTheory.SimplicialThickening J) : (CategoryTheory.SimplicialThickening.functor f).map i j = CategoryTheory.nerveMap (CategoryTheory.SimplicialThickening.functorMap f i j)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08