Loogle!
Result
Found 10 declarations mentioning CategoryTheory.Functor.IsStronglyCartesian.map.
- CategoryTheory.Functor.IsStronglyCartesian.map š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] {R' : š®} {a' : š³} {g : R' ā¶ R} {f' : R' ā¶ S} (hf' : f' = CategoryTheory.CategoryStruct.comp g f) (Ļ' : a' ā¶ b) [p.IsHomLift f' Ļ'] : a' ā¶ a - CategoryTheory.Functor.IsStronglyCartesian.map_self š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] : CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ āÆ Ļ = CategoryTheory.CategoryStruct.id a - CategoryTheory.Functor.IsStronglyCartesian.map_isHomLift š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] {R' : š®} {a' : š³} {g : R' ā¶ R} {f' : R' ā¶ S} (hf' : f' = CategoryTheory.CategoryStruct.comp g f) (Ļ' : a' ā¶ b) [p.IsHomLift f' Ļ'] : p.IsHomLift g (CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ hf' Ļ') - CategoryTheory.Functor.IsStronglyCartesian.fac š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] {R' : š®} {a' : š³} {g : R' ā¶ R} {f' : R' ā¶ S} (hf' : f' = CategoryTheory.CategoryStruct.comp g f) (Ļ' : a' ā¶ b) [p.IsHomLift f' Ļ'] : CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ hf' Ļ') Ļ = Ļ' - CategoryTheory.Functor.IsStronglyCartesian.fac_assoc š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] {R' : š®} {a' : š³} {g : R' ā¶ R} {f' : R' ā¶ S} (hf' : f' = CategoryTheory.CategoryStruct.comp g f) (Ļ' : a' ā¶ b) [p.IsHomLift f' Ļ'] {Z : š³} (h : b ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ hf' Ļ') (CategoryTheory.CategoryStruct.comp Ļ h) = CategoryTheory.CategoryStruct.comp Ļ' h - CategoryTheory.Functor.IsStronglyCartesian.domainIsoOfBaseIso_hom š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R R' S : š®} {a a' b : š³} {f : R ā¶ S} {f' : R' ā¶ S} {g : R' ā R} (h : f' = CategoryTheory.CategoryStruct.comp g.hom f) (Ļ : a ā¶ b) (Ļ' : a' ā¶ b) [p.IsStronglyCartesian f Ļ] [p.IsStronglyCartesian f' Ļ'] : (CategoryTheory.Functor.IsStronglyCartesian.domainIsoOfBaseIso p h Ļ Ļ').hom = CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ h Ļ' - CategoryTheory.Functor.IsStronglyCartesian.map_uniq š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] {R' : š®} {a' : š³} {g : R' ā¶ R} {f' : R' ā¶ S} (hf' : f' = CategoryTheory.CategoryStruct.comp g f) (Ļ' : a' ā¶ b) [p.IsHomLift f' Ļ'] (Ļ : a' ā¶ a) [p.IsHomLift g Ļ] (hĻ : CategoryTheory.CategoryStruct.comp Ļ Ļ = Ļ') : Ļ = CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ hf' Ļ' - CategoryTheory.Functor.IsStronglyCartesian.domainIsoOfBaseIso_inv š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R R' S : š®} {a a' b : š³} {f : R ā¶ S} {f' : R' ā¶ S} {g : R' ā R} (h : f' = CategoryTheory.CategoryStruct.comp g.hom f) (Ļ : a ā¶ b) (Ļ' : a' ā¶ b) [p.IsStronglyCartesian f Ļ] [p.IsStronglyCartesian f' Ļ'] : (CategoryTheory.Functor.IsStronglyCartesian.domainIsoOfBaseIso p h Ļ Ļ').inv = CategoryTheory.Functor.IsStronglyCartesian.map p f' Ļ' āÆ Ļ - CategoryTheory.Functor.IsStronglyCartesian.map_comp_map š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] {R' R'' : š®} {a' a'' : š³} {f' : R' ā¶ S} {f'' : R'' ā¶ S} {g : R' ā¶ R} {g' : R'' ā¶ R'} (H : f' = CategoryTheory.CategoryStruct.comp g f) (H' : f'' = CategoryTheory.CategoryStruct.comp g' f') (Ļ' : a' ā¶ b) (Ļ'' : a'' ā¶ b) [p.IsStronglyCartesian f' Ļ'] [p.IsHomLift f'' Ļ''] : CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.IsStronglyCartesian.map p f' Ļ' H' Ļ'') (CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ H Ļ') = CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ āÆ Ļ'' - CategoryTheory.Functor.IsStronglyCartesian.map_comp_map_assoc š Mathlib.CategoryTheory.FiberedCategory.Cartesian
{š® : Type uā} {š³ : Type uā} [CategoryTheory.Category.{vā, uā} š®] [CategoryTheory.Category.{vā, uā} š³] (p : CategoryTheory.Functor š³ š®) {R S : š®} {a b : š³} (f : R ā¶ S) (Ļ : a ā¶ b) [p.IsStronglyCartesian f Ļ] {R' R'' : š®} {a' a'' : š³} {f' : R' ā¶ S} {f'' : R'' ā¶ S} {g : R' ā¶ R} {g' : R'' ā¶ R'} (H : f' = CategoryTheory.CategoryStruct.comp g f) (H' : f'' = CategoryTheory.CategoryStruct.comp g' f') (Ļ' : a' ā¶ b) (Ļ'' : a'' ā¶ b) [p.IsStronglyCartesian f' Ļ'] [p.IsHomLift f'' Ļ''] {Z : š³} (h : a ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.IsStronglyCartesian.map p f' Ļ' H' Ļ'') (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ H Ļ') h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.IsStronglyCartesian.map p f Ļ āÆ Ļ'') h
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65