Loogle!
Result
Found 12 declarations mentioning CategoryTheory.Functor.OfSequence.map.
- CategoryTheory.Functor.OfSequence.map ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} : ((n : โ) โ X n โถ X (n + 1)) โ (i j : โ) โ i โค j โ (X i โถ X j)
- CategoryTheory.Functor.OfSequence.map_id ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i : โ) : CategoryTheory.Functor.OfSequence.map f i i โฏ = CategoryTheory.CategoryStruct.id (X i)
- CategoryTheory.Functor.OfSequence.map_le_succ ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i : โ) : CategoryTheory.Functor.OfSequence.map f i (i + 1) โฏ = f i
- CategoryTheory.Functor.OfSequence.map_comp ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i j k : โ) (hij : i โค j) (hjk : j โค k) : CategoryTheory.Functor.OfSequence.map f i k โฏ = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f i j hij) (CategoryTheory.Functor.OfSequence.map f j k hjk)
- CategoryTheory.Functor.OfSequence.map.eq_2 ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) : CategoryTheory.Functor.OfSequence.map xโยน 0 1 = fun x => xโยน 0
- CategoryTheory.Functor.OfSequence.map.eq_1 ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) : CategoryTheory.Functor.OfSequence.map xโยน 0 0 = fun x => CategoryTheory.CategoryStruct.id (xโ 0)
- CategoryTheory.Functor.OfSequence.map.congr_simp ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (xโ xโยน : (n : โ) โ X n โถ X (n + 1)) : xโ = xโยน โ โ (i j : โ) (a : i โค j), CategoryTheory.Functor.OfSequence.map xโ i j a = CategoryTheory.Functor.OfSequence.map xโยน i j a
- CategoryTheory.Functor.OfSequence.map_comp_assoc ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i j k : โ) (hij : i โค j) (hjk : j โค k) {Z : C} (h : X k โถ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f i k โฏ) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f i j hij) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f j k hjk) h)
- CategoryTheory.Functor.OfSequence.map.eq_5 ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) (k l : โ) : CategoryTheory.Functor.OfSequence.map xโยน k.succ l.succ = fun x => CategoryTheory.Functor.OfSequence.map (fun n => xโยน (n + 1)) k l โฏ
- CategoryTheory.Functor.OfSequence.map.eq_4 ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) (n : โ) : CategoryTheory.Functor.OfSequence.map xโยน n.succ 0 = fun a => nomatch a
- CategoryTheory.Functor.OfSequence.map.eq_3 ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) (l : โ) (x_5 : l = 0 โ False) : CategoryTheory.Functor.OfSequence.map xโยน 0 l.succ = fun x => CategoryTheory.CategoryStruct.comp (xโยน 0) (CategoryTheory.Functor.OfSequence.map (fun n => xโยน (n + 1)) 0 l โฏ)
- CategoryTheory.Functor.OfSequence.map.eq_def ๐ Mathlib.CategoryTheory.Functor.OfSequence
 {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) (xโยฒ xโยณ : โ) : CategoryTheory.Functor.OfSequence.map xโยน xโยฒ xโยณ = match (motive := (x : โ โ C) โ ((n : โ) โ x n โถ x (n + 1)) โ (x_2 x_3 : โ) โ x_2 โค x_3 โ (x x_2 โถ x x_3)) xโ, xโยน, xโยฒ, xโยณ with | x, x_1, 0, 0 => fun x_2 => CategoryTheory.CategoryStruct.id (x 0) | x, f, 0, 1 => fun x => f 0 | x, f, 0, l.succ => fun x_1 => CategoryTheory.CategoryStruct.comp (f 0) (CategoryTheory.Functor.OfSequence.map (fun n => f (n + 1)) 0 l โฏ) | x, x_1, n.succ, 0 => fun a => nomatch a | x, f, k.succ, l.succ => fun x_1 => CategoryTheory.Functor.OfSequence.map (fun n => f (n + 1)) k l โฏ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
- By constant: 
 ๐- Real.sin
 finds all lemmas whose statement somehow mentions the sine function.
- By lemma name substring: 
 ๐- "differ"
 finds all lemmas that have- "differ"somewhere in their lemma name.
- By subexpression: 
 ๐- _ * (_ ^ _)
 finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.- The pattern can also be non-linear, as in 
 ๐- Real.sqrt ?a * Real.sqrt ?a- If the pattern has parameters, they are matched in any order. Both of these will find - List.map:
 ๐- (?a -> ?b) -> List ?a -> List ?b
 ๐- List ?a -> (?a -> ?b) -> List ?b
- By main conclusion: 
 ๐- |- tsum _ = _ * tsum _
 finds all lemmas where the conclusion (the subexpression to the right of all- โand- โ) has the given shape.- As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example, 
 ๐- |- _ < _ โ tsum _ < tsum _
 will find- tsum_lt_tsumeven though the hypothesis- f i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 187ba29 serving mathlib revision 8b227ee