Loogle!
Result
Found 10 declarations mentioning CategoryTheory.Functor.OfSequence.map.
- CategoryTheory.Functor.OfSequence.map ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} : ((n : โ) โ X n โถ X (n + 1)) โ (i j : โ) โ i โค j โ (X i โถ X j) - CategoryTheory.Functor.OfSequence.map_id ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i : โ) : CategoryTheory.Functor.OfSequence.map f i i โฏ = CategoryTheory.CategoryStruct.id (X i) - CategoryTheory.Functor.OfSequence.map_comp ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i j k : โ) (hij : i โค j) (hjk : j โค k) : CategoryTheory.Functor.OfSequence.map f i k โฏ = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f i j hij) (CategoryTheory.Functor.OfSequence.map f j k hjk) - CategoryTheory.Functor.OfSequence.map.eq_2 ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) : CategoryTheory.Functor.OfSequence.map xโยน 0 1 = fun x => xโยน 0 - CategoryTheory.Functor.OfSequence.map.eq_1 ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) : CategoryTheory.Functor.OfSequence.map xโยน 0 0 = fun x => CategoryTheory.CategoryStruct.id (xโ 0) - CategoryTheory.Functor.OfSequence.map_comp_assoc ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i j k : โ) (hij : i โค j) (hjk : j โค k) {Z : C} (h : X k โถ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f i k โฏ) h = CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f i j hij) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Functor.OfSequence.map f j k hjk) h) - CategoryTheory.Functor.OfSequence.map_le_succ ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X : โ โ C} (f : (n : โ) โ X n โถ X (n + 1)) (i : โ) : CategoryTheory.Functor.OfSequence.map f i (i + 1) โฏ = f i - CategoryTheory.Functor.OfSequence.map.eq_5 ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) (k l : โ) : CategoryTheory.Functor.OfSequence.map xโยน k.succ l.succ = fun x => CategoryTheory.Functor.OfSequence.map (fun n => xโยน (n + 1)) k l โฏ - CategoryTheory.Functor.OfSequence.map.eq_4 ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) (n : โ) : CategoryTheory.Functor.OfSequence.map xโยน n.succ 0 = fun a => nomatch a - CategoryTheory.Functor.OfSequence.map.eq_3 ๐ Mathlib.CategoryTheory.Functor.OfSequence
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (xโ : โ โ C) (xโยน : (n : โ) โ xโ n โถ xโ (n + 1)) (l : โ) (x_5 : l = 0 โ False) : CategoryTheory.Functor.OfSequence.map xโยน 0 l.succ = fun x => CategoryTheory.CategoryStruct.comp (xโยน 0) (CategoryTheory.Functor.OfSequence.map (fun n => xโยน (n + 1)) 0 l โฏ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08