Loogle!
Result
Found 4 declarations mentioning CategoryTheory.Functorial.map.
- CategoryTheory.Functorial.map π Mathlib.CategoryTheory.Functor.Functorial
{C : Type uβ} {instβ : CategoryTheory.Category.{vβ, uβ} C} {D : Type uβ} {instβΒΉ : CategoryTheory.Category.{vβ, uβ} D} (F : C β D) [self : CategoryTheory.Functorial F] {X Y : C} : (X βΆ Y) β (F X βΆ F Y) - CategoryTheory.Functorial.map_id π Mathlib.CategoryTheory.Functor.Functorial
{C : Type uβ} {instβ : CategoryTheory.Category.{vβ, uβ} C} {D : Type uβ} {instβΒΉ : CategoryTheory.Category.{vβ, uβ} D} {F : C β D} [self : CategoryTheory.Functorial F] {X : C} : CategoryTheory.map F (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (F X) - CategoryTheory.Functorial.map_comp π Mathlib.CategoryTheory.Functor.Functorial
{C : Type uβ} {instβ : CategoryTheory.Category.{vβ, uβ} C} {D : Type uβ} {instβΒΉ : CategoryTheory.Category.{vβ, uβ} D} {F : C β D} [self : CategoryTheory.Functorial F] {X Y Z : C} {f : X βΆ Y} {g : Y βΆ Z} : CategoryTheory.map F (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp (CategoryTheory.map F f) (CategoryTheory.map F g) - CategoryTheory.map_functorial_obj π Mathlib.CategoryTheory.Functor.Functorial
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) {X Y : C} (f : X βΆ Y) : CategoryTheory.map F.obj f = F.map f
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08