Loogle!
Result
Found 8 declarations mentioning CategoryTheory.GrothendieckTopology.Cover.Arrow.map.
- CategoryTheory.GrothendieckTopology.Cover.Arrow.map ๐ Mathlib.CategoryTheory.Sites.Grothendieck
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {J : CategoryTheory.GrothendieckTopology C} {S T : J.Cover X} (I : S.Arrow) (f : S โถ T) : T.Arrow - CategoryTheory.GrothendieckTopology.Cover.Arrow.map_Y ๐ Mathlib.CategoryTheory.Sites.Grothendieck
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {J : CategoryTheory.GrothendieckTopology C} {S T : J.Cover X} (I : S.Arrow) (f : S โถ T) : (I.map f).Y = I.Y - CategoryTheory.GrothendieckTopology.Cover.Arrow.map_f ๐ Mathlib.CategoryTheory.Sites.Grothendieck
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {J : CategoryTheory.GrothendieckTopology C} {S T : J.Cover X} (I : S.Arrow) (f : S โถ T) : (I.map f).f = I.f - CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.map ๐ Mathlib.CategoryTheory.Sites.Grothendieck
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {J : CategoryTheory.GrothendieckTopology C} {S T : J.Cover X} {Iโ Iโ : S.Arrow} (r : Iโ.Relation Iโ) (f : S โถ T) : (Iโ.map f).Relation (Iโ.map f) - CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.map_Z ๐ Mathlib.CategoryTheory.Sites.Grothendieck
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {J : CategoryTheory.GrothendieckTopology C} {S T : J.Cover X} {Iโ Iโ : S.Arrow} (r : Iโ.Relation Iโ) (f : S โถ T) : (r.map f).Z = r.Z - CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.map_gโ ๐ Mathlib.CategoryTheory.Sites.Grothendieck
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {J : CategoryTheory.GrothendieckTopology C} {S T : J.Cover X} {Iโ Iโ : S.Arrow} (r : Iโ.Relation Iโ) (f : S โถ T) : (r.map f).gโ = r.gโ - CategoryTheory.GrothendieckTopology.Cover.Arrow.Relation.map_gโ ๐ Mathlib.CategoryTheory.Sites.Grothendieck
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {J : CategoryTheory.GrothendieckTopology C} {S T : J.Cover X} {Iโ Iโ : S.Arrow} (r : Iโ.Relation Iโ) (f : S โถ T) : (r.map f).gโ = r.gโ - CategoryTheory.GrothendieckTopology.diagram_map ๐ Mathlib.CategoryTheory.Sites.Plus
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {D : Type w} [CategoryTheory.Category.{max v u, w} D] [โ (P : CategoryTheory.Functor Cแตแต D) (X : C) (S : J.Cover X), CategoryTheory.Limits.HasMultiequalizer (S.index P)] (P : CategoryTheory.Functor Cแตแต D) (X : C) {S xโ : (J.Cover X)แตแต} (f : S โถ xโ) : (J.diagram P X).map f = CategoryTheory.Limits.Multiequalizer.lift ((Opposite.unop xโ).index P) (CategoryTheory.Limits.multiequalizer ((Opposite.unop S).index P)) (fun I => CategoryTheory.Limits.Multiequalizer.ฮน ((Opposite.unop S).index P) (CategoryTheory.GrothendieckTopology.Cover.Arrow.map I f.unop)) โฏ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08