Loogle!
Result
Found 4 declarations mentioning CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.map.
- CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.map ๐ Mathlib.CategoryTheory.SmallObject.TransfiniteCompositionLifting
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [LinearOrder J] [OrderBot J] {F : CategoryTheory.Functor J C} {c : CategoryTheory.Limits.Cocone F} {X Y : C} {p : X โถ Y} {f : F.obj โฅ โถ X} {g : c.pt โถ Y} {j : J} (sq' : CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct c p f g j) {j' : J} (ฮฑ : j' โถ j) : CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct c p f g j' - CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor_map ๐ Mathlib.CategoryTheory.SmallObject.TransfiniteCompositionLifting
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [LinearOrder J] [OrderBot J] {F : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cocone F) {X Y : C} (p : X โถ Y) (f : F.obj โฅ โถ X) (g : c.pt โถ Y) {Xโ Yโ : Jแตแต} (ฮฑ : Xโ โถ Yโ) (sq' : CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct c p f g (Opposite.unop Xโ)) : (CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor c p f g).map ฮฑ sq' = sq'.map ฮฑ.unop - CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.map_f' ๐ Mathlib.CategoryTheory.SmallObject.TransfiniteCompositionLifting
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [LinearOrder J] [OrderBot J] {F : CategoryTheory.Functor J C} {c : CategoryTheory.Limits.Cocone F} {X Y : C} {p : X โถ Y} {f : F.obj โฅ โถ X} {g : c.pt โถ Y} {j : J} (sq' : CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct c p f g j) {j' : J} (ฮฑ : j' โถ j) : (sq'.map ฮฑ).f' = CategoryTheory.CategoryStruct.comp (F.map ฮฑ) sq'.f' - CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.map_lift ๐ Mathlib.CategoryTheory.SmallObject.TransfiniteCompositionLifting
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : Type w} [LinearOrder J] [OrderBot J] {F : CategoryTheory.Functor J C} {c : CategoryTheory.Limits.Cocone F} {X Y : C} {p : X โถ Y} {f : F.obj โฅ โถ X} {g : c.pt โถ Y} [F.IsWellOrderContinuous] {j : J} (hj : Order.IsSuccLimit j) (s : โ(โฏ.functor.op.comp (CategoryTheory.HasLiftingProperty.transfiniteComposition.sqFunctor c p f g)).sections) {i : J} (hij : i < j) : CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.map (CategoryTheory.HasLiftingProperty.transfiniteComposition.wellOrderInductionData.lift hj s) (CategoryTheory.homOfLE โฏ) = โs (Opposite.op โจi, hijโฉ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65