Loogle!
Result
Found 5 declarations mentioning CategoryTheory.Limits.DiagramOfCocones.map.
- CategoryTheory.Limits.DiagramOfCocones.map š Mathlib.CategoryTheory.Limits.Fubini
{J : Type u_1} {K : Type u_2} [CategoryTheory.Category.{u_4, u_1} J] [CategoryTheory.Category.{u_5, u_2} K] {C : Type u_3} [CategoryTheory.Category.{u_6, u_3} C] {F : CategoryTheory.Functor J (CategoryTheory.Functor K C)} (self : CategoryTheory.Limits.DiagramOfCocones F) {j j' : J} (f : j ā¶ j') : self.obj j ā¶ (CategoryTheory.Limits.Cocones.precompose (F.map f)).obj (self.obj j') - CategoryTheory.Limits.DiagramOfCocones.mkOfHasColimits_map_hom š Mathlib.CategoryTheory.Limits.Fubini
{J : Type u_1} {K : Type u_2} [CategoryTheory.Category.{u_4, u_1} J] [CategoryTheory.Category.{u_5, u_2} K] {C : Type u_3} [CategoryTheory.Category.{u_6, u_3} C] (F : CategoryTheory.Functor J (CategoryTheory.Functor K C)) [CategoryTheory.Limits.HasColimitsOfShape K C] {jā j'ā : J} (f : jā ā¶ j'ā) : ((CategoryTheory.Limits.DiagramOfCocones.mkOfHasColimits F).map f).hom = CategoryTheory.Limits.colim.map (F.map f) - CategoryTheory.Limits.DiagramOfCocones.coconePoints_map š Mathlib.CategoryTheory.Limits.Fubini
{J : Type u_1} {K : Type u_2} [CategoryTheory.Category.{u_4, u_1} J] [CategoryTheory.Category.{u_5, u_2} K] {C : Type u_3} [CategoryTheory.Category.{u_6, u_3} C] {F : CategoryTheory.Functor J (CategoryTheory.Functor K C)} (D : CategoryTheory.Limits.DiagramOfCocones F) {Xā Yā : J} (f : Xā ā¶ Yā) : D.coconePoints.map f = (D.map f).hom - CategoryTheory.Limits.DiagramOfCocones.id š Mathlib.CategoryTheory.Limits.Fubini
{J : Type u_1} {K : Type u_2} [CategoryTheory.Category.{u_4, u_1} J] [CategoryTheory.Category.{u_5, u_2} K] {C : Type u_3} [CategoryTheory.Category.{u_6, u_3} C] {F : CategoryTheory.Functor J (CategoryTheory.Functor K C)} (self : CategoryTheory.Limits.DiagramOfCocones F) (j : J) : (self.map (CategoryTheory.CategoryStruct.id j)).hom = CategoryTheory.CategoryStruct.id (self.obj j).pt - CategoryTheory.Limits.DiagramOfCocones.comp š Mathlib.CategoryTheory.Limits.Fubini
{J : Type u_1} {K : Type u_2} [CategoryTheory.Category.{u_4, u_1} J] [CategoryTheory.Category.{u_5, u_2} K] {C : Type u_3} [CategoryTheory.Category.{u_6, u_3} C] {F : CategoryTheory.Functor J (CategoryTheory.Functor K C)} (self : CategoryTheory.Limits.DiagramOfCocones F) {jā jā jā : J} (f : jā ā¶ jā) (g : jā ā¶ jā) : (self.map (CategoryTheory.CategoryStruct.comp f g)).hom = CategoryTheory.CategoryStruct.comp (self.map f).hom (self.map g).hom
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08