Loogle!
Result
Found 11 declarations mentioning CategoryTheory.Limits.IsLimit.map.
- CategoryTheory.Limits.IsLimit.map š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} (s : CategoryTheory.Limits.Cone F) {t : CategoryTheory.Limits.Cone G} (P : CategoryTheory.Limits.IsLimit t) (α : F ā¶ G) : s.pt ā¶ t.pt - CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_hom š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} {s : CategoryTheory.Limits.Cone F} {t : CategoryTheory.Limits.Cone G} (P : CategoryTheory.Limits.IsLimit s) (Q : CategoryTheory.Limits.IsLimit t) (w : F ā G) : (P.conePointsIsoOfNatIso Q w).hom = CategoryTheory.Limits.IsLimit.map s Q w.hom - CategoryTheory.Limits.IsLimit.conePointsIsoOfNatIso_inv š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} {s : CategoryTheory.Limits.Cone F} {t : CategoryTheory.Limits.Cone G} (P : CategoryTheory.Limits.IsLimit s) (Q : CategoryTheory.Limits.IsLimit t) (w : F ā G) : (P.conePointsIsoOfNatIso Q w).inv = CategoryTheory.Limits.IsLimit.map t P w.inv - CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_hom š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} {r s : CategoryTheory.Limits.Cone F} {t : CategoryTheory.Limits.Cone G} (P : CategoryTheory.Limits.IsLimit s) (Q : CategoryTheory.Limits.IsLimit t) (w : F ā G) : CategoryTheory.CategoryStruct.comp (P.lift r) (P.conePointsIsoOfNatIso Q w).hom = CategoryTheory.Limits.IsLimit.map r Q w.hom - CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_inv š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} {r s : CategoryTheory.Limits.Cone G} {t : CategoryTheory.Limits.Cone F} (P : CategoryTheory.Limits.IsLimit t) (Q : CategoryTheory.Limits.IsLimit s) (w : F ā G) : CategoryTheory.CategoryStruct.comp (Q.lift r) (P.conePointsIsoOfNatIso Q w).inv = CategoryTheory.Limits.IsLimit.map r P w.inv - CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_hom_assoc š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} {r s : CategoryTheory.Limits.Cone F} {t : CategoryTheory.Limits.Cone G} (P : CategoryTheory.Limits.IsLimit s) (Q : CategoryTheory.Limits.IsLimit t) (w : F ā G) {Z : C} (h : t.pt ā¶ Z) : CategoryTheory.CategoryStruct.comp (P.lift r) (CategoryTheory.CategoryStruct.comp (P.conePointsIsoOfNatIso Q w).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.IsLimit.map r Q w.hom) h - CategoryTheory.Limits.IsLimit.lift_comp_conePointsIsoOfNatIso_inv_assoc š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} {r s : CategoryTheory.Limits.Cone G} {t : CategoryTheory.Limits.Cone F} (P : CategoryTheory.Limits.IsLimit t) (Q : CategoryTheory.Limits.IsLimit s) (w : F ā G) {Z : C} (h : t.pt ā¶ Z) : CategoryTheory.CategoryStruct.comp (Q.lift r) (CategoryTheory.CategoryStruct.comp (P.conePointsIsoOfNatIso Q w).inv h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.IsLimit.map r P w.inv) h - CategoryTheory.Limits.IsLimit.map_Ļ_assoc š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cone F) {d : CategoryTheory.Limits.Cone G} (hd : CategoryTheory.Limits.IsLimit d) (α : F ā¶ G) (j : J) {Z : C} (h : G.obj j ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.IsLimit.map c hd α) (CategoryTheory.CategoryStruct.comp (d.Ļ.app j) h) = CategoryTheory.CategoryStruct.comp (c.Ļ.app j) (CategoryTheory.CategoryStruct.comp (α.app j) h) - CategoryTheory.Limits.IsLimit.map_Ļ š Mathlib.CategoryTheory.Limits.IsLimit
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cone F) {d : CategoryTheory.Limits.Cone G} (hd : CategoryTheory.Limits.IsLimit d) (α : F ā¶ G) (j : J) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.IsLimit.map c hd α) (d.Ļ.app j) = CategoryTheory.CategoryStruct.comp (c.Ļ.app j) (α.app j) - CategoryTheory.Limits.limMap.eq_1 š Mathlib.Condensed.Light.Epi
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type u} [CategoryTheory.Category.{v, u} C] {F G : CategoryTheory.Functor J C} [CategoryTheory.Limits.HasLimit F] [CategoryTheory.Limits.HasLimit G] (α : F ā¶ G) : CategoryTheory.Limits.limMap α = CategoryTheory.Limits.IsLimit.map (CategoryTheory.Limits.limit.cone F) (CategoryTheory.Limits.limit.isLimit G) α - CategoryTheory.Limits.IsLimit.map.eq_1 š Mathlib.Condensed.Light.Epi
{J : Type uā} [CategoryTheory.Category.{vā, uā} J] {C : Type uā} [CategoryTheory.Category.{vā, uā} C] {F G : CategoryTheory.Functor J C} (s : CategoryTheory.Limits.Cone F) {t : CategoryTheory.Limits.Cone G} (P : CategoryTheory.Limits.IsLimit t) (α : F ā¶ G) : CategoryTheory.Limits.IsLimit.map s P α = P.lift ((CategoryTheory.Limits.Cones.postcompose α).obj s)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08