Loogle!
Result
Found 34 declarations mentioning CategoryTheory.Limits.MultispanIndex.map.
- CategoryTheory.Limits.MultispanIndex.map 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) : CategoryTheory.Limits.MultispanIndex J D - CategoryTheory.Limits.Multicofork.map 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} {d : CategoryTheory.Limits.MultispanIndex J C} (c : CategoryTheory.Limits.Multicofork d) (F : CategoryTheory.Functor C D) : CategoryTheory.Limits.Multicofork (d.map F) - CategoryTheory.Limits.MultispanIndex.map_left 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) (i : J.L) : (d.map F).left i = F.obj (d.left i) - CategoryTheory.Limits.MultispanIndex.map_right 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) (i : J.R) : (d.map F).right i = F.obj (d.right i) - CategoryTheory.Limits.MultispanIndex.multispanMapIso 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) : (d.map F).multispan ≅ d.multispan.comp F - CategoryTheory.Limits.Multicofork.map_pt 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} {d : CategoryTheory.Limits.MultispanIndex J C} (c : CategoryTheory.Limits.Multicofork d) (F : CategoryTheory.Functor C D) : (c.map F).pt = F.obj c.pt - CategoryTheory.Limits.Multicofork.isColimitMapOfPreserves 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} {d : CategoryTheory.Limits.MultispanIndex J C} (c : CategoryTheory.Limits.Multicofork d) (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.PreservesColimit d.multispan F] (hc : CategoryTheory.Limits.IsColimit c) : CategoryTheory.Limits.IsColimit (c.map F) - CategoryTheory.Limits.Multicofork.isColimitMapEquiv 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} {d : CategoryTheory.Limits.MultispanIndex J C} (c : CategoryTheory.Limits.Multicofork d) (F : CategoryTheory.Functor C D) : CategoryTheory.Limits.IsColimit (F.mapCocone c) ≃ CategoryTheory.Limits.IsColimit (c.map F) - CategoryTheory.Limits.MultispanIndex.map_fst 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) (i : J.L) : (d.map F).fst i = F.map (d.fst i) - CategoryTheory.Limits.MultispanIndex.map_snd 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) (i : J.L) : (d.map F).snd i = F.map (d.snd i) - CategoryTheory.Limits.MultispanIndex.multispanMapIso_hom_app 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) (X : CategoryTheory.Limits.WalkingMultispan J) : (d.multispanMapIso F).hom.app X = (match X with | CategoryTheory.Limits.WalkingMultispan.left a => CategoryTheory.Iso.refl (F.obj (d.left a)) | CategoryTheory.Limits.WalkingMultispan.right a => CategoryTheory.Iso.refl (F.obj (d.right a))).hom - CategoryTheory.Limits.MultispanIndex.multispanMapIso_inv_app 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} (d : CategoryTheory.Limits.MultispanIndex J C) (F : CategoryTheory.Functor C D) (X : CategoryTheory.Limits.WalkingMultispan J) : (d.multispanMapIso F).inv.app X = (match X with | CategoryTheory.Limits.WalkingMultispan.left a => CategoryTheory.Iso.refl (F.obj (d.left a)) | CategoryTheory.Limits.WalkingMultispan.right a => CategoryTheory.Iso.refl (F.obj (d.right a))).inv - CategoryTheory.Limits.Multicofork.map_ι_app 📋 Mathlib.CategoryTheory.Limits.Preserves.Shapes.Multiequalizer
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Category.{v_2, u_2} D] {J : CategoryTheory.Limits.MultispanShape} {d : CategoryTheory.Limits.MultispanIndex J C} (c : CategoryTheory.Limits.Multicofork d) (F : CategoryTheory.Functor C D) (x : CategoryTheory.Limits.WalkingMultispan J) : (c.map F).ι.app x = match x with | CategoryTheory.Limits.WalkingMultispan.left a => CategoryTheory.CategoryStruct.comp (F.map (d.fst a)) (F.map (c.π (J.fst a))) | CategoryTheory.Limits.WalkingMultispan.right a => F.map (c.π a) - CategoryTheory.Limits.Types.isColimitOfMulticoequalizerDiagram 📋 Mathlib.CategoryTheory.Limits.Types.Multicoequalizer
{X : Type u} {ι : Type w} {A : Set X} {U : ι → Set X} {V : ι → ι → Set X} (c : CompleteLattice.MulticoequalizerDiagram A U V) : CategoryTheory.Limits.IsColimit (c.multicofork.map Set.functorToTypes) - CategoryTheory.Limits.Types.isColimitOfMulticoequalizerDiagram' 📋 Mathlib.CategoryTheory.Limits.Types.Multicoequalizer
{X : Type u} {ι : Type w} {A : Set X} {U : ι → Set X} {V : ι → ι → Set X} [LinearOrder ι] (c : CompleteLattice.MulticoequalizerDiagram A U V) : CategoryTheory.Limits.IsColimit (c.multicofork.toLinearOrder.map Set.functorToTypes) - SSet.Subcomplex.MulticoequalizerDiagram.isColimit 📋 Mathlib.AlgebraicTopology.SimplicialSet.SubcomplexColimits
{X : SSet} {A : X.Subcomplex} {ι : Type u_1} {U : ι → X.Subcomplex} {V : ι → ι → X.Subcomplex} (h : A.MulticoequalizerDiagram U V) : CategoryTheory.Limits.IsColimit ((CompleteLattice.MulticoequalizerDiagram.multicofork h).map SSet.Subcomplex.toSSetFunctor) - SSet.Subcomplex.MulticoequalizerDiagram.isColimit' 📋 Mathlib.AlgebraicTopology.SimplicialSet.SubcomplexColimits
{X : SSet} {A : X.Subcomplex} {ι : Type u_1} {U : ι → X.Subcomplex} {V : ι → ι → X.Subcomplex} (h : A.MulticoequalizerDiagram U V) [LinearOrder ι] : CategoryTheory.Limits.IsColimit ((CompleteLattice.MulticoequalizerDiagram.multicofork h).toLinearOrder.map SSet.Subcomplex.toSSetFunctor) - SSet.horn₃₁.desc.multicofork 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) : CategoryTheory.Limits.Multicofork ((CompleteLattice.MulticoequalizerDiagram.multispanIndex ⋯).toLinearOrder.map SSet.Subcomplex.toSSetFunctor) - SSet.horn₃₂.desc.multicofork 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) : CategoryTheory.Limits.Multicofork ((CompleteLattice.MulticoequalizerDiagram.multispanIndex ⋯).toLinearOrder.map SSet.Subcomplex.toSSetFunctor) - SSet.horn₃₁.desc.multicofork_pt 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) : (SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).pt = X - SSet.horn₃₂.desc.multicofork_pt 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) : (SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).pt = X - SSet.horn.isColimit 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{n : ℕ} (i : Fin (n + 1)) : CategoryTheory.Limits.IsColimit ((CompleteLattice.MulticoequalizerDiagram.multicofork ⋯).toLinearOrder.map SSet.Subcomplex.toSSetFunctor) - SSet.horn₃₁.desc.multicofork_π_three 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) : (SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).π ⟨3, SSet.horn₃₁.desc.multicofork_π_three._proof_1⟩ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 3).inv f₃ - SSet.horn₃₁.desc.multicofork_π_two 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) : (SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).π ⟨2, SSet.horn₃₁.desc.multicofork_π_two._proof_1⟩ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 2).inv f₂ - SSet.horn₃₁.desc.multicofork_π_zero 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) : (SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).π ⟨0, SSet.horn₃₁.desc.multicofork_π_zero._proof_1⟩ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 0).inv f₀ - SSet.horn₃₂.desc.multicofork_π_one 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) : (SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).π ⟨1, SSet.horn₃₂.desc.multicofork_π_one._proof_1⟩ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 1).inv f₁ - SSet.horn₃₂.desc.multicofork_π_three 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) : (SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).π ⟨3, SSet.horn₃₂.desc.multicofork_π_three._proof_1⟩ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 3).inv f₃ - SSet.horn₃₂.desc.multicofork_π_zero 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) : (SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).π ⟨0, SSet.horn₃₂.desc.multicofork_π_zero._proof_1⟩ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 0).inv f₀ - SSet.horn₃₁.desc.multicofork_π_three_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) {Z : SSet} (h : (SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).pt ⟶ Z) : CategoryTheory.CategoryStruct.comp ((SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).π ⟨3, SSet.horn₃₁.desc.multicofork_π_three._proof_1⟩) h = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 3).inv (CategoryTheory.CategoryStruct.comp f₃ h) - SSet.horn₃₁.desc.multicofork_π_two_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) {Z : SSet} (h : (SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).pt ⟶ Z) : CategoryTheory.CategoryStruct.comp ((SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).π ⟨2, SSet.horn₃₁.desc.multicofork_π_two._proof_1⟩) h = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 2).inv (CategoryTheory.CategoryStruct.comp f₂ h) - SSet.horn₃₁.desc.multicofork_π_zero_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₂ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₁₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₂) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₂ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₃) {Z : SSet} (h : (SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).pt ⟶ Z) : CategoryTheory.CategoryStruct.comp ((SSet.horn₃₁.desc.multicofork f₀ f₂ f₃ h₁₂ h₁₃ h₂₃).π ⟨0, SSet.horn₃₁.desc.multicofork_π_zero._proof_1⟩) h = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 0).inv (CategoryTheory.CategoryStruct.comp f₀ h) - SSet.horn₃₂.desc.multicofork_π_one_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) {Z : SSet} (h : (SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).pt ⟶ Z) : CategoryTheory.CategoryStruct.comp ((SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).π ⟨1, SSet.horn₃₂.desc.multicofork_π_one._proof_1⟩) h = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 1).inv (CategoryTheory.CategoryStruct.comp f₁ h) - SSet.horn₃₂.desc.multicofork_π_three_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) {Z : SSet} (h : (SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).pt ⟶ Z) : CategoryTheory.CategoryStruct.comp ((SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).π ⟨3, SSet.horn₃₂.desc.multicofork_π_three._proof_1⟩) h = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 3).inv (CategoryTheory.CategoryStruct.comp f₃ h) - SSet.horn₃₂.desc.multicofork_π_zero_assoc 📋 Mathlib.AlgebraicTopology.SimplicialSet.HornColimits
{X : SSet} (f₀ f₁ f₃ : SSet.stdSimplex.obj (SimplexCategory.mk 2) ⟶ X) (h₀₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₁ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 1) f₃) (h₁₂ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 2) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₃) (h₂₃ : CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₀ = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.δ 0) f₁) {Z : SSet} (h : (SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).pt ⟶ Z) : CategoryTheory.CategoryStruct.comp ((SSet.horn₃₂.desc.multicofork f₀ f₁ f₃ h₀₂ h₁₂ h₂₃).π ⟨0, SSet.horn₃₂.desc.multicofork_π_zero._proof_1⟩) h = CategoryTheory.CategoryStruct.comp (SSet.stdSimplex.faceSingletonComplIso 0).inv (CategoryTheory.CategoryStruct.comp f₀ h)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c