Loogle!
Result
Found 14 declarations mentioning CategoryTheory.Limits.Sigma.map.
- CategoryTheory.Limits.Sigma.map 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : β → C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] (p : (b : β) → f b ⟶ g b) : ∐ f ⟶ ∐ g - CategoryTheory.Limits.Sigma.map_id 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : α → C} [CategoryTheory.Limits.HasCoproduct f] : (CategoryTheory.Limits.Sigma.map fun a => CategoryTheory.CategoryStruct.id (f a)) = CategoryTheory.CategoryStruct.id (∐ f) - CategoryTheory.Limits.Sigma.map_epi 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : β → C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] (p : (b : β) → f b ⟶ g b) [∀ (i : β), CategoryTheory.Epi (p i)] : CategoryTheory.Epi (CategoryTheory.Limits.Sigma.map p) - CategoryTheory.Limits.Sigma.map'_id 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : α → C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] (p : (b : α) → f b ⟶ g b) : CategoryTheory.Limits.Sigma.map' id p = CategoryTheory.Limits.Sigma.map p - CategoryTheory.Limits.Sigma.map_isIso 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : β → C} [CategoryTheory.Limits.HasCoproductsOfShape β C] (p : (b : β) → f b ⟶ g b) [∀ (b : β), CategoryTheory.IsIso (p b)] : CategoryTheory.IsIso (CategoryTheory.Limits.Sigma.map p) - CategoryTheory.Limits.Sigma.map_comp_map 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g h : α → C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] [CategoryTheory.Limits.HasCoproduct h] (q : (a : α) → f a ⟶ g a) (q' : (a : α) → g a ⟶ h a) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.map q) (CategoryTheory.Limits.Sigma.map q') = CategoryTheory.Limits.Sigma.map fun a => CategoryTheory.CategoryStruct.comp (q a) (q' a) - CategoryTheory.Limits.Sigma.map_comp_map' 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : α → C} {h : β → C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] [CategoryTheory.Limits.HasCoproduct h] (p : α → β) (q : (a : α) → f a ⟶ g a) (q' : (a : α) → g a ⟶ h (p a)) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.map q) (CategoryTheory.Limits.Sigma.map' p q') = CategoryTheory.Limits.Sigma.map' p fun a => CategoryTheory.CategoryStruct.comp (q a) (q' a) - CategoryTheory.Limits.Sigma.map'_comp_map 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {α : Type w₂} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : α → C} {g h : β → C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] [CategoryTheory.Limits.HasCoproduct h] (p : α → β) (q : (a : α) → f a ⟶ g (p a)) (q' : (b : β) → g b ⟶ h b) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.map' p q) (CategoryTheory.Limits.Sigma.map q') = CategoryTheory.Limits.Sigma.map' p fun a => CategoryTheory.CategoryStruct.comp (q a) (q' (p a)) - CategoryTheory.Limits.sigmaConst_map_app 📋 Mathlib.CategoryTheory.Limits.Shapes.Products
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasCoproducts C] {X✝ Y✝ : C} (f : X✝ ⟶ Y✝) (n : Type w) : (CategoryTheory.Limits.sigmaConst.map f).app n = CategoryTheory.Limits.Sigma.map fun x => f - CategoryTheory.Limits.Sigma.map_mono 📋 Mathlib.CategoryTheory.Limits.Shapes.Biproducts
{J : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {f g : J → C} [CategoryTheory.Limits.HasBiproduct f] [CategoryTheory.Limits.HasBiproduct g] (p : (j : J) → f j ⟶ g j) [∀ (j : J), CategoryTheory.Mono (p j)] : CategoryTheory.Mono (CategoryTheory.Limits.Sigma.map p) - CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset.eq_1 📋 Mathlib.CategoryTheory.Limits.Constructions.Filtered
(C : Type u) [CategoryTheory.Category.{v, u} C] (α : Type w) [CategoryTheory.Limits.HasFiniteCoproducts C] : CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset C α = { obj := CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetObj, map := fun {X Y} β => { app := fun x => CategoryTheory.Limits.Sigma.map fun x_1 => β.app ↑x_1, naturality := ⋯ }, map_id := ⋯, map_comp := ⋯ } - CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset_map_app 📋 Mathlib.CategoryTheory.Limits.Constructions.Filtered
(C : Type u) [CategoryTheory.Category.{v, u} C] (α : Type w) [CategoryTheory.Limits.HasFiniteCoproducts C] {X✝ Y✝ : CategoryTheory.Functor (CategoryTheory.Discrete α) C} (β : X✝ ⟶ Y✝) (x✝ : Finset (CategoryTheory.Discrete α)) : ((CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset C α).map β).app x✝ = CategoryTheory.Limits.Sigma.map fun x => β.app ↑x - CategoryTheory.MorphismProperty.IsStableUnderCoproductsOfShape.mk 📋 Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (W : CategoryTheory.MorphismProperty C) (J : Type u_1) [W.RespectsIso] (hW : ∀ (X₁ X₂ : J → C) [inst : CategoryTheory.Limits.HasCoproduct X₁] [inst_1 : CategoryTheory.Limits.HasCoproduct X₂] (f : (j : J) → X₁ j ⟶ X₂ j), (∀ (j : J), W (f j)) → W (CategoryTheory.Limits.Sigma.map f)) : W.IsStableUnderCoproductsOfShape J - CategoryTheory.instHasLiftingPropertyMap_1 📋 Mathlib.CategoryTheory.LiftingProperties.Limits
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {J : Type u_2} {A B : J → C} [CategoryTheory.Limits.HasCoproduct A] [CategoryTheory.Limits.HasCoproduct B] (f : (j : J) → A j ⟶ B j) {X Y : C} (p : X ⟶ Y) [∀ (j : J), CategoryTheory.HasLiftingProperty (f j) p] : CategoryTheory.HasLiftingProperty (CategoryTheory.Limits.Sigma.map f) p
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08