Loogle!
Result
Found 17 declarations mentioning CategoryTheory.Limits.Sigma.map.
- CategoryTheory.Limits.Sigma.map š Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : β ā C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] (p : (b : β) ā f b ā¶ g b) : ā f ā¶ ā g - CategoryTheory.Limits.Sigma.map_id š Mathlib.CategoryTheory.Limits.Shapes.Products
{α : Type wā} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : α ā C} [CategoryTheory.Limits.HasCoproduct f] : (CategoryTheory.Limits.Sigma.map fun a => CategoryTheory.CategoryStruct.id (f a)) = CategoryTheory.CategoryStruct.id (ā f) - CategoryTheory.Limits.Sigma.map_epi š Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : β ā C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] (p : (b : β) ā f b ā¶ g b) [ā (i : β), CategoryTheory.Epi (p i)] : CategoryTheory.Epi (CategoryTheory.Limits.Sigma.map p) - CategoryTheory.Limits.Sigma.map'_id š Mathlib.CategoryTheory.Limits.Shapes.Products
{α : Type wā} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : α ā C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] (p : (b : α) ā f b ā¶ g b) : CategoryTheory.Limits.Sigma.map' id p = CategoryTheory.Limits.Sigma.map p - CategoryTheory.Limits.Sigma.map_isIso š Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : β ā C} [CategoryTheory.Limits.HasCoproductsOfShape β C] (p : (b : β) ā f b ā¶ g b) [ā (b : β), CategoryTheory.IsIso (p b)] : CategoryTheory.IsIso (CategoryTheory.Limits.Sigma.map p) - CategoryTheory.Limits.Sigma.map_comp_map š Mathlib.CategoryTheory.Limits.Shapes.Products
{α : Type wā} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g h : α ā C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] [CategoryTheory.Limits.HasCoproduct h] (q : (a : α) ā f a ā¶ g a) (q' : (a : α) ā g a ā¶ h a) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.map q) (CategoryTheory.Limits.Sigma.map q') = CategoryTheory.Limits.Sigma.map fun a => CategoryTheory.CategoryStruct.comp (q a) (q' a) - CategoryTheory.Limits.Sigma.map_comp_map' š Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {α : Type wā} {C : Type u} [CategoryTheory.Category.{v, u} C] {f g : α ā C} {h : β ā C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] [CategoryTheory.Limits.HasCoproduct h] (p : α ā β) (q : (a : α) ā f a ā¶ g a) (q' : (a : α) ā g a ā¶ h (p a)) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.map q) (CategoryTheory.Limits.Sigma.map' p q') = CategoryTheory.Limits.Sigma.map' p fun a => CategoryTheory.CategoryStruct.comp (q a) (q' a) - CategoryTheory.Limits.Sigma.map'_comp_map š Mathlib.CategoryTheory.Limits.Shapes.Products
{β : Type w} {α : Type wā} {C : Type u} [CategoryTheory.Category.{v, u} C] {f : α ā C} {g h : β ā C} [CategoryTheory.Limits.HasCoproduct f] [CategoryTheory.Limits.HasCoproduct g] [CategoryTheory.Limits.HasCoproduct h] (p : α ā β) (q : (a : α) ā f a ā¶ g (p a)) (q' : (b : β) ā g b ā¶ h b) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.Sigma.map' p q) (CategoryTheory.Limits.Sigma.map q') = CategoryTheory.Limits.Sigma.map' p fun a => CategoryTheory.CategoryStruct.comp (q a) (q' (p a)) - CategoryTheory.Limits.sigmaConst_map_app š Mathlib.CategoryTheory.Limits.Shapes.Products
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasCoproducts C] {Xā Yā : C} (f : Xā ā¶ Yā) (n : Type w) : (CategoryTheory.Limits.sigmaConst.map f).app n = CategoryTheory.Limits.Sigma.map fun x => f - CategoryTheory.Limits.Sigma.map_mono š Mathlib.CategoryTheory.Limits.Shapes.Biproducts
{J : Type w} {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {f g : J ā C} [CategoryTheory.Limits.HasBiproduct f] [CategoryTheory.Limits.HasBiproduct g] (p : (j : J) ā f j ā¶ g j) [ā (j : J), CategoryTheory.Mono (p j)] : CategoryTheory.Mono (CategoryTheory.Limits.Sigma.map p) - CategoryTheory.MorphismProperty.IsStableUnderCoproductsOfShape.mk š Mathlib.CategoryTheory.MorphismProperty.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] (W : CategoryTheory.MorphismProperty C) (J : Type u_1) [W.RespectsIso] (hW : ā (Xā Xā : J ā C) [inst : CategoryTheory.Limits.HasCoproduct Xā] [inst_1 : CategoryTheory.Limits.HasCoproduct Xā] (f : (j : J) ā Xā j ā¶ Xā j), (ā (j : J), W (f j)) ā W (CategoryTheory.Limits.Sigma.map f)) : W.IsStableUnderCoproductsOfShape J - CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset.eq_1 š Mathlib.CategoryTheory.Limits.Constructions.Filtered
(C : Type u) [CategoryTheory.Category.{v, u} C] (α : Type w) [CategoryTheory.Limits.HasFiniteCoproducts C] : CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset C α = { obj := CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinsetObj, map := fun {X Y} β => { app := fun x => CategoryTheory.Limits.Sigma.map fun x_1 => β.app āx_1, naturality := ⯠}, map_id := āÆ, map_comp := ⯠} - CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset_map_app š Mathlib.CategoryTheory.Limits.Constructions.Filtered
(C : Type u) [CategoryTheory.Category.{v, u} C] (α : Type w) [CategoryTheory.Limits.HasFiniteCoproducts C] {Xā Yā : CategoryTheory.Functor (CategoryTheory.Discrete α) C} (β : Xā ā¶ Yā) (xā : Finset (CategoryTheory.Discrete α)) : ((CategoryTheory.Limits.CoproductsFromFiniteFiltered.liftToFinset C α).map β).app xā = CategoryTheory.Limits.Sigma.map fun x => β.app āx - CategoryTheory.instHasLiftingPropertyMap_1 š Mathlib.CategoryTheory.LiftingProperties.Limits
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] {J : Type u_2} {A B : J ā C} [CategoryTheory.Limits.HasCoproduct A] [CategoryTheory.Limits.HasCoproduct B] (f : (j : J) ā A j ā¶ B j) {X Y : C} (p : X ā¶ Y) [ā (j : J), CategoryTheory.HasLiftingProperty (f j) p] : CategoryTheory.HasLiftingProperty (CategoryTheory.Limits.Sigma.map f) p - HomotopicalAlgebra.instCofibrationMapOfIsWeakFactorizationSystemCofibrationsTrivialFibrations š Mathlib.AlgebraicTopology.ModelCategory.Instances
{C : Type u} [CategoryTheory.Category.{v, u} C] [HomotopicalAlgebra.CategoryWithWeakEquivalences C] [HomotopicalAlgebra.CategoryWithCofibrations C] [HomotopicalAlgebra.CategoryWithFibrations C] {J : Type u_1} {X Y : J ā C} (f : (i : J) ā X i ā¶ Y i) [CategoryTheory.Limits.HasCoproduct X] [CategoryTheory.Limits.HasCoproduct Y] [h : ā (i : J), HomotopicalAlgebra.Cofibration (f i)] [(HomotopicalAlgebra.cofibrations C).IsWeakFactorizationSystem (HomotopicalAlgebra.trivialFibrations C)] : HomotopicalAlgebra.Cofibration (CategoryTheory.Limits.Sigma.map f) - HomotopicalAlgebra.instWeakEquivalenceMapOfIsWeakFactorizationSystemTrivialCofibrationsFibrations š Mathlib.AlgebraicTopology.ModelCategory.Instances
{C : Type u} [CategoryTheory.Category.{v, u} C] [HomotopicalAlgebra.CategoryWithWeakEquivalences C] [HomotopicalAlgebra.CategoryWithCofibrations C] [HomotopicalAlgebra.CategoryWithFibrations C] {J : Type u_1} {X Y : J ā C} (f : (i : J) ā X i ā¶ Y i) [CategoryTheory.Limits.HasCoproduct X] [CategoryTheory.Limits.HasCoproduct Y] [h : ā (i : J), HomotopicalAlgebra.Cofibration (f i)] [(HomotopicalAlgebra.trivialCofibrations C).IsWeakFactorizationSystem (HomotopicalAlgebra.fibrations C)] [ā (i : J), HomotopicalAlgebra.WeakEquivalence (f i)] : HomotopicalAlgebra.WeakEquivalence (CategoryTheory.Limits.Sigma.map f) - CategoryTheory.Limits.FormalCoproduct.eval_map_app š Mathlib.CategoryTheory.Limits.FormalCoproducts
(C : Type u) [CategoryTheory.Category.{v, u} C] (A : Type uā) [CategoryTheory.Category.{vā, uā} A] [CategoryTheory.Limits.HasCoproducts A] {Xā Yā : CategoryTheory.Functor C A} (α : Xā ā¶ Yā) (f : CategoryTheory.Limits.FormalCoproduct C) : ((CategoryTheory.Limits.FormalCoproduct.eval C A).map α).app f = CategoryTheory.Limits.Sigma.map fun i => α.app (f.obj i)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65