Loogle!
Result
Found 27 declarations mentioning CategoryTheory.Limits.biprod.map.
- CategoryTheory.Limits.biprod.map 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : W ⊞ X ⟶ Y ⊞ Z - CategoryTheory.Limits.biprod.map_epi 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} (f : W ⟶ Y) (g : X ⟶ Z) [CategoryTheory.Epi f] [CategoryTheory.Epi g] [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] : CategoryTheory.Epi (CategoryTheory.Limits.biprod.map f g) - CategoryTheory.Limits.biprod.map_mono 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} (f : W ⟶ Y) (g : X ⟶ Z) [CategoryTheory.Mono f] [CategoryTheory.Mono g] [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] : CategoryTheory.Mono (CategoryTheory.Limits.biprod.map f g) - CategoryTheory.Limits.biprod.map_eq_map' 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : CategoryTheory.Limits.biprod.map f g = CategoryTheory.Limits.biprod.map' f g - CategoryTheory.isIso_left_of_isIso_biprod_map 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} (f : W ⟶ Y) (g : X ⟶ Z) [CategoryTheory.IsIso (CategoryTheory.Limits.biprod.map f g)] : CategoryTheory.IsIso f - CategoryTheory.isIso_right_of_isIso_biprod_map 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} (f : W ⟶ Y) (g : X ⟶ Z) [CategoryTheory.IsIso (CategoryTheory.Limits.biprod.map f g)] : CategoryTheory.IsIso g - CategoryTheory.Limits.biprod.mapIso_hom 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ≅ Y) (g : X ≅ Z) : (CategoryTheory.Limits.biprod.mapIso f g).hom = CategoryTheory.Limits.biprod.map f.hom g.hom - CategoryTheory.Limits.biprod.mapIso_inv 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ≅ Y) (g : X ≅ Z) : (CategoryTheory.Limits.biprod.mapIso f g).inv = CategoryTheory.Limits.biprod.map f.inv g.inv - CategoryTheory.Limits.biprod.inl_map 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.Limits.biprod.map f g) = CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.inl - CategoryTheory.Limits.biprod.inr_map 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inr (CategoryTheory.Limits.biprod.map f g) = CategoryTheory.CategoryStruct.comp g CategoryTheory.Limits.biprod.inr - CategoryTheory.Limits.biprod.map_fst 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) CategoryTheory.Limits.biprod.fst = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst f - CategoryTheory.Limits.biprod.map_snd 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) CategoryTheory.Limits.biprod.snd = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd g - CategoryTheory.Limits.biprod.inl_map_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) {Z✝ : C} (h : Y ⊞ Z ⟶ Z✝) : CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) h) = CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl h) - CategoryTheory.Limits.biprod.inr_map_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) {Z✝ : C} (h : Y ⊞ Z ⟶ Z✝) : CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inr (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) h) = CategoryTheory.CategoryStruct.comp g (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inr h) - CategoryTheory.Limits.biprod.map_fst_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) {Z✝ : C} (h : Y ⟶ Z✝) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst h) = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst (CategoryTheory.CategoryStruct.comp f h) - CategoryTheory.Limits.biprod.map_snd_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] {W X Y Z : C} [CategoryTheory.Limits.HasBinaryBiproduct W X] [CategoryTheory.Limits.HasBinaryBiproduct Y Z] (f : W ⟶ Y) (g : X ⟶ Z) {Z✝ : C} (h : Z ⟶ Z✝) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd h) = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd (CategoryTheory.CategoryStruct.comp g h) - CategoryTheory.Limits.biprod.braid_natural 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ W) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) (CategoryTheory.Limits.biprod.braiding Y W).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.braiding X Z).hom (CategoryTheory.Limits.biprod.map g f) - CategoryTheory.Limits.biprod.braiding_map_braiding 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} (f : W ⟶ Y) (g : X ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.braiding X W).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) (CategoryTheory.Limits.biprod.braiding Y Z).hom) = CategoryTheory.Limits.biprod.map g f - CategoryTheory.Limits.biprod.braid_natural_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} (f : X ⟶ Y) (g : Z ⟶ W) {Z✝ : C} (h : W ⊞ Y ⟶ Z✝) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.braiding Y W).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.braiding X Z).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map g f) h) - CategoryTheory.Limits.biprod.braiding_map_braiding_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} (f : W ⟶ Y) (g : X ⟶ Z) {Z✝ : C} (h : Z ⊞ Y ⟶ Z✝) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.braiding X W).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f g) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.braiding Y Z).hom h)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map g f) h - CategoryTheory.Limits.biprod.associator_inv_natural 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {U V W X Y Z : C} (f : U ⟶ X) (g : V ⟶ Y) (h : W ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f (CategoryTheory.Limits.biprod.map g h)) (CategoryTheory.Limits.biprod.associator X Y Z).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.associator U V W).inv (CategoryTheory.Limits.biprod.map (CategoryTheory.Limits.biprod.map f g) h) - CategoryTheory.Limits.biprod.associator_natural 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {U V W X Y Z : C} (f : U ⟶ X) (g : V ⟶ Y) (h : W ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map (CategoryTheory.Limits.biprod.map f g) h) (CategoryTheory.Limits.biprod.associator X Y Z).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.associator U V W).hom (CategoryTheory.Limits.biprod.map f (CategoryTheory.Limits.biprod.map g h)) - CategoryTheory.Limits.biprod.associator_inv_natural_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {U V W X Y Z : C} (f : U ⟶ X) (g : V ⟶ Y) (h : W ⟶ Z) {Z✝ : C} (h✝ : (X ⊞ Y) ⊞ Z ⟶ Z✝) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f (CategoryTheory.Limits.biprod.map g h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.associator X Y Z).inv h✝) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.associator U V W).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map (CategoryTheory.Limits.biprod.map f g) h) h✝) - CategoryTheory.Limits.biprod.associator_natural_assoc 📋 Mathlib.CategoryTheory.Limits.Shapes.BinaryBiproducts
{C : Type uC} [CategoryTheory.Category.{uC', uC} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasBinaryBiproducts C] {U V W X Y Z : C} (f : U ⟶ X) (g : V ⟶ Y) (h : W ⟶ Z) {Z✝ : C} (h✝ : X ⊞ Y ⊞ Z ⟶ Z✝) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map (CategoryTheory.Limits.biprod.map f g) h) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.associator X Y Z).hom h✝) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.associator U V W).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.biprod.map f (CategoryTheory.Limits.biprod.map g h)) h✝) - CategoryTheory.Biprod.gaussian' 📋 Mathlib.CategoryTheory.Preadditive.Biproducts
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ ⟶ Y₁) (f₁₂ : X₁ ⟶ Y₂) (f₂₁ : X₂ ⟶ Y₁) (f₂₂ : X₂ ⟶ Y₂) [CategoryTheory.IsIso f₁₁] : (L : X₁ ⊞ X₂ ≅ X₁ ⊞ X₂) ×' (R : Y₁ ⊞ Y₂ ≅ Y₁ ⊞ Y₂) ×' (g₂₂ : X₂ ⟶ Y₂) ×' CategoryTheory.CategoryStruct.comp L.hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂) R.hom) = CategoryTheory.Limits.biprod.map f₁₁ g₂₂ - CategoryTheory.Limits.biprod.map_eq 📋 Mathlib.CategoryTheory.Preadditive.Biproducts
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} {f : W ⟶ Y} {g : X ⟶ Z} : CategoryTheory.Limits.biprod.map f g = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.inl) + CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd (CategoryTheory.CategoryStruct.comp g CategoryTheory.Limits.biprod.inr) - CategoryTheory.Biprod.gaussian 📋 Mathlib.CategoryTheory.Preadditive.Biproducts
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f : X₁ ⊞ X₂ ⟶ Y₁ ⊞ Y₂) [CategoryTheory.IsIso (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.fst))] : (L : X₁ ⊞ X₂ ≅ X₁ ⊞ X₂) ×' (R : Y₁ ⊞ Y₂ ≅ Y₁ ⊞ Y₂) ×' (g₂₂ : X₂ ⟶ Y₂) ×' CategoryTheory.CategoryStruct.comp L.hom (CategoryTheory.CategoryStruct.comp f R.hom) = CategoryTheory.Limits.biprod.map (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.fst)) g₂₂
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08