Loogle!
Result
Found 8 declarations mentioning CategoryTheory.Limits.end_.map.
- CategoryTheory.Limits.end_.map_id š Mathlib.CategoryTheory.Limits.Shapes.End
{J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] : CategoryTheory.Limits.end_.map (CategoryTheory.CategoryStruct.id F) = CategoryTheory.CategoryStruct.id (CategoryTheory.Limits.end_ F) - CategoryTheory.Limits.end_.map š Mathlib.CategoryTheory.Limits.Shapes.End
{J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] {F' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F'] (f : F ā¶ F') : CategoryTheory.Limits.end_ F ā¶ CategoryTheory.Limits.end_ F' - CategoryTheory.Limits.endFunctor_map š Mathlib.CategoryTheory.Limits.Shapes.End
(J : Type u) [CategoryTheory.Category.{v, u} J] (C : Type u') [CategoryTheory.Category.{v', u'} C] [ā (F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)), CategoryTheory.Limits.HasEnd F] {Xā Yā : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} (f : Xā ā¶ Yā) : (CategoryTheory.Limits.endFunctor J C).map f = CategoryTheory.Limits.end_.map f - CategoryTheory.Limits.end_.map_comp š Mathlib.CategoryTheory.Limits.Shapes.End
{J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] {F' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F'] (f : F ā¶ F') {F'' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F''] (g : F' ā¶ F'') : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.map f) (CategoryTheory.Limits.end_.map g) = CategoryTheory.Limits.end_.map (CategoryTheory.CategoryStruct.comp f g) - CategoryTheory.Limits.end_.map_comp_assoc š Mathlib.CategoryTheory.Limits.Shapes.End
{J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] {F' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F'] (f : F ā¶ F') {F'' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F''] (g : F' ā¶ F'') {Z : C} (h : CategoryTheory.Limits.end_ F'' ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.map f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.map g) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.map (CategoryTheory.CategoryStruct.comp f g)) h - CategoryTheory.Limits.end_.map.eq_1 š Mathlib.CategoryTheory.Limits.Shapes.End
{J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] {F' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F'] (f : F ā¶ F') : CategoryTheory.Limits.end_.map f = CategoryTheory.Limits.end_.lift (fun x => CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.Ļ F x) ((f.app (Opposite.op x)).app x)) ⯠- CategoryTheory.Limits.end_.map_Ļ š Mathlib.CategoryTheory.Limits.Shapes.End
{J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] {F' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F'] (f : F ā¶ F') (j : J) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.map f) (CategoryTheory.Limits.end_.Ļ F' j) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.Ļ F j) ((f.app (Opposite.op j)).app j) - CategoryTheory.Limits.end_.map_Ļ_assoc š Mathlib.CategoryTheory.Limits.Shapes.End
{J : Type u} [CategoryTheory.Category.{v, u} J] {C : Type u'} [CategoryTheory.Category.{v', u'} C] {F : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F] {F' : CategoryTheory.Functor Jįµįµ (CategoryTheory.Functor J C)} [CategoryTheory.Limits.HasEnd F'] (f : F ā¶ F') (j : J) {Z : C} (h : (F'.obj (Opposite.op j)).obj j ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.map f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.Ļ F' j) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.end_.Ļ F j) (CategoryTheory.CategoryStruct.comp ((f.app (Opposite.op j)).app j) h)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65