Loogle!
Result
Found 10 declarations mentioning CategoryTheory.Limits.image.map.
- CategoryTheory.Limits.im_map 📋 Mathlib.CategoryTheory.Limits.Shapes.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasImages C] [CategoryTheory.Limits.HasImageMaps C] {X✝ Y✝ : CategoryTheory.Arrow C} (st : X✝ ⟶ Y✝) : CategoryTheory.Limits.im.map st = CategoryTheory.Limits.image.map st - CategoryTheory.Limits.image.map 📋 Mathlib.CategoryTheory.Limits.Shapes.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] {f g : CategoryTheory.Arrow C} [CategoryTheory.Limits.HasImage f.hom] [CategoryTheory.Limits.HasImage g.hom] (sq : f ⟶ g) [CategoryTheory.Limits.HasImageMap sq] : CategoryTheory.Limits.image f.hom ⟶ CategoryTheory.Limits.image g.hom - CategoryTheory.Limits.image.map_id 📋 Mathlib.CategoryTheory.Limits.Shapes.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] (f : CategoryTheory.Arrow C) [CategoryTheory.Limits.HasImage f.hom] [CategoryTheory.Limits.HasImageMap (CategoryTheory.CategoryStruct.id f)] : CategoryTheory.Limits.image.map (CategoryTheory.CategoryStruct.id f) = CategoryTheory.CategoryStruct.id (CategoryTheory.Limits.image f.hom) - CategoryTheory.Limits.image.map_homMk'_ι 📋 Mathlib.CategoryTheory.Limits.Shapes.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y P Q : C} {k : X ⟶ Y} [CategoryTheory.Limits.HasImage k] {l : P ⟶ Q} [CategoryTheory.Limits.HasImage l] {m : X ⟶ P} {n : Y ⟶ Q} (w : CategoryTheory.CategoryStruct.comp m l = CategoryTheory.CategoryStruct.comp k n) [CategoryTheory.Limits.HasImageMap (CategoryTheory.Arrow.homMk' m n w)] : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.image.map (CategoryTheory.Arrow.homMk' m n w)) (CategoryTheory.Limits.image.ι l) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.image.ι k) n - CategoryTheory.Limits.image.map_comp 📋 Mathlib.CategoryTheory.Limits.Shapes.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] {f g : CategoryTheory.Arrow C} [CategoryTheory.Limits.HasImage f.hom] [CategoryTheory.Limits.HasImage g.hom] (sq : f ⟶ g) [CategoryTheory.Limits.HasImageMap sq] {h : CategoryTheory.Arrow C} [CategoryTheory.Limits.HasImage h.hom] (sq' : g ⟶ h) [CategoryTheory.Limits.HasImageMap sq'] [CategoryTheory.Limits.HasImageMap (CategoryTheory.CategoryStruct.comp sq sq')] : CategoryTheory.Limits.image.map (CategoryTheory.CategoryStruct.comp sq sq') = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.image.map sq) (CategoryTheory.Limits.image.map sq') - CategoryTheory.Limits.image.factor_map 📋 Mathlib.CategoryTheory.Limits.Shapes.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] {f g : CategoryTheory.Arrow C} [CategoryTheory.Limits.HasImage f.hom] [CategoryTheory.Limits.HasImage g.hom] (sq : f ⟶ g) [CategoryTheory.Limits.HasImageMap sq] : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.factorThruImage f.hom) (CategoryTheory.Limits.image.map sq) = CategoryTheory.CategoryStruct.comp sq.left (CategoryTheory.Limits.factorThruImage g.hom) - CategoryTheory.Limits.image.map_ι 📋 Mathlib.CategoryTheory.Limits.Shapes.Images
{C : Type u} [CategoryTheory.Category.{v, u} C] {f g : CategoryTheory.Arrow C} [CategoryTheory.Limits.HasImage f.hom] [CategoryTheory.Limits.HasImage g.hom] (sq : f ⟶ g) [CategoryTheory.Limits.HasImageMap sq] : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.image.map sq) (CategoryTheory.Limits.image.ι g.hom) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.image.ι f.hom) sq.right - CategoryTheory.Limits.imageSubobjectMap.eq_1 📋 Mathlib.CategoryTheory.Subobject.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {W X Y Z : C} {f : W ⟶ X} [CategoryTheory.Limits.HasImage f] {g : Y ⟶ Z} [CategoryTheory.Limits.HasImage g] (sq : CategoryTheory.Arrow.mk f ⟶ CategoryTheory.Arrow.mk g) [CategoryTheory.Limits.HasImageMap sq] : CategoryTheory.Limits.imageSubobjectMap sq = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.imageSubobjectIso f).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.image.map sq) (CategoryTheory.Limits.imageSubobjectIso g).inv) - CategoryTheory.Limits.imageSubobjectIso_comp_image_map 📋 Mathlib.CategoryTheory.Subobject.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {W X Y Z : C} {f : W ⟶ X} [CategoryTheory.Limits.HasImage f] {g : Y ⟶ Z} [CategoryTheory.Limits.HasImage g] (sq : CategoryTheory.Arrow.mk f ⟶ CategoryTheory.Arrow.mk g) [CategoryTheory.Limits.HasImageMap sq] : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.imageSubobjectIso (CategoryTheory.Arrow.mk f).hom).hom (CategoryTheory.Limits.image.map sq) = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.imageSubobjectMap sq) (CategoryTheory.Limits.imageSubobjectIso g).hom - CategoryTheory.Limits.image_map_comp_imageSubobjectIso_inv 📋 Mathlib.CategoryTheory.Subobject.Limits
{C : Type u} [CategoryTheory.Category.{v, u} C] {W X Y Z : C} {f : W ⟶ X} [CategoryTheory.Limits.HasImage f] {g : Y ⟶ Z} [CategoryTheory.Limits.HasImage g] (sq : CategoryTheory.Arrow.mk f ⟶ CategoryTheory.Arrow.mk g) [CategoryTheory.Limits.HasImageMap sq] : CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.image.map sq) (CategoryTheory.Limits.imageSubobjectIso (CategoryTheory.Arrow.mk g).hom).inv = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.imageSubobjectIso f).inv (CategoryTheory.Limits.imageSubobjectMap sq)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08