Loogle!
Result
Found 19 declarations mentioning CategoryTheory.MonoidalCategory.DayConvolution.map.
- CategoryTheory.MonoidalCategory.DayConvolution.map š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] {F G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G] {F' G' : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F' G'] (f : F ā¶ F') (g : G ā¶ G') : CategoryTheory.MonoidalCategory.DayConvolution.convolution F G ā¶ CategoryTheory.MonoidalCategory.DayConvolution.convolution F' G' - CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_naturality š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] (U : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolutionUnit U] {F : CategoryTheory.Functor C V} [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.Functor.fromPUnit (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) d) (CategoryTheory.MonoidalCategory.tensorRight v)] [CategoryTheory.MonoidalCategory.DayConvolution U F] {G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution U G] (f : F ā¶ G) : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id U) f) (CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor U G).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor U F).hom f - CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_naturality š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] (U : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolutionUnit U] {F : CategoryTheory.Functor C V} [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.Functor.fromPUnit (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [CategoryTheory.MonoidalCategory.DayConvolution F U] {G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution G U] (f : F ā¶ G) : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map f (CategoryTheory.CategoryStruct.id U)) (CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor U G).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor U F).hom f - CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor_naturality_assoc š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] (U : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolutionUnit U] {F : CategoryTheory.Functor C V} [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.Functor.fromPUnit (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) d) (CategoryTheory.MonoidalCategory.tensorRight v)] [CategoryTheory.MonoidalCategory.DayConvolution U F] {G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution U G] (f : F ā¶ G) {Z : CategoryTheory.Functor C V} (h : G ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id U) f) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor U G).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor U F).hom (CategoryTheory.CategoryStruct.comp f h) - CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor_naturality_assoc š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] (U : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolutionUnit U] {F : CategoryTheory.Functor C V} [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.Functor.fromPUnit (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [CategoryTheory.MonoidalCategory.DayConvolution F U] {G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution G U] (f : F ā¶ G) {Z : CategoryTheory.Functor C V} (h : G ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map f (CategoryTheory.CategoryStruct.id U)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor U G).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor U F).hom (CategoryTheory.CategoryStruct.comp f h) - CategoryTheory.MonoidalCategory.DayConvolution.triangle š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorRight v)] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.Functor.fromPUnit (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.Functor.fromPUnit (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) d) (CategoryTheory.MonoidalCategory.tensorRight v)] [ā (v : V) (d : C Ć C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow ((CategoryTheory.Functor.id C).prod (CategoryTheory.Functor.fromPUnit (CategoryTheory.MonoidalCategoryStruct.tensorUnit C))) d) (CategoryTheory.MonoidalCategory.tensorRight v)] (F G U : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolutionUnit U] [CategoryTheory.MonoidalCategory.DayConvolution F U] [CategoryTheory.MonoidalCategory.DayConvolution U G] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution U G)] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F U) G] [CategoryTheory.MonoidalCategory.DayConvolution F G] : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator F U G).hom (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) (CategoryTheory.MonoidalCategory.DayConvolutionUnit.leftUnitor U G).hom) = CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.MonoidalCategory.DayConvolutionUnit.rightUnitor U F).hom (CategoryTheory.CategoryStruct.id G) - CategoryTheory.MonoidalCategory.DayConvolution.associator_naturality š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] {F G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G] {H : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H)] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorRight v)] {F' G' H' : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F' G'] [CategoryTheory.MonoidalCategory.DayConvolution G' H'] [CategoryTheory.MonoidalCategory.DayConvolution F' (CategoryTheory.MonoidalCategory.DayConvolution.convolution G' H')] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F' G') H'] (f : F ā¶ F') (g : G ā¶ G') (h : H ā¶ H') : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.MonoidalCategory.DayConvolution.map f g) h) (CategoryTheory.MonoidalCategory.DayConvolution.associator F' G' H').hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator F G H).hom (CategoryTheory.MonoidalCategory.DayConvolution.map f (CategoryTheory.MonoidalCategory.DayConvolution.map g h)) - CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] {F G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G] {F' G' : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F' G'] (f : F ā¶ F') (g : G ā¶ G') (x y : C) : CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategory.DayConvolution.unit F G).app (x, y)) ((CategoryTheory.MonoidalCategory.DayConvolution.map f g).app (CategoryTheory.MonoidalCategoryStruct.tensorObj x y)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (f.app x) (g.app y)) ((CategoryTheory.MonoidalCategory.DayConvolution.unit F' G').app (x, y)) - CategoryTheory.MonoidalCategory.DayConvolution.unit_app_map_app_assoc š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] {F G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G] {F' G' : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F' G'] (f : F ā¶ F') (g : G ā¶ G') (x y : C) {Z : V} (h : (CategoryTheory.MonoidalCategory.DayConvolution.convolution F' G').obj (CategoryTheory.MonoidalCategoryStruct.tensorObj x y) ā¶ Z) : CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategory.DayConvolution.unit F G).app (x, y)) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategory.DayConvolution.map f g).app (CategoryTheory.MonoidalCategoryStruct.tensorObj x y)) h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom (f.app x) (g.app y)) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.MonoidalCategory.DayConvolution.unit F' G').app (x, y)) h) - CategoryTheory.MonoidalCategory.DayConvolution.pentagon š Mathlib.CategoryTheory.Monoidal.DayConvolution
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] (F G : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution F G] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorRight v)] [ā (v : V) (d : C Ć C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow ((CategoryTheory.MonoidalCategory.tensor C).prod (CategoryTheory.Functor.id C)) d) (CategoryTheory.MonoidalCategory.tensorRight v)] (H K : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H)] [CategoryTheory.MonoidalCategory.DayConvolution H K] [CategoryTheory.MonoidalCategory.DayConvolution G (CategoryTheory.MonoidalCategory.DayConvolution.convolution H K)] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H) K] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H) K] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) (CategoryTheory.MonoidalCategory.DayConvolution.convolution H K)] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H)) K] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G (CategoryTheory.MonoidalCategory.DayConvolution.convolution H K))] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H) K)] : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.MonoidalCategory.DayConvolution.associator F G H).hom (CategoryTheory.CategoryStruct.id K)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H) K).hom (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) (CategoryTheory.MonoidalCategory.DayConvolution.associator G H K).hom)) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H K).hom (CategoryTheory.MonoidalCategory.DayConvolution.associator F G (CategoryTheory.MonoidalCategory.DayConvolution.convolution H K)).hom - CategoryTheory.MonoidalCategory.DayConvolution.braiding_naturality_left š Mathlib.CategoryTheory.Monoidal.DayConvolution.Braided
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.BraidedCategory V] {F G : CategoryTheory.Functor C V} (Ī· : F ā¶ G) (H : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution F H] [CategoryTheory.MonoidalCategory.DayConvolution H F] [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution H G] : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map Ī· (CategoryTheory.CategoryStruct.id H)) (CategoryTheory.MonoidalCategory.DayConvolution.braiding G H).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding F H).hom (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id H) Ī·) - CategoryTheory.MonoidalCategory.DayConvolution.braiding_naturality_right š Mathlib.CategoryTheory.Monoidal.DayConvolution.Braided
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.BraidedCategory V] {F G : CategoryTheory.Functor C V} (H : CategoryTheory.Functor C V) (Ī· : F ā¶ G) [CategoryTheory.MonoidalCategory.DayConvolution F H] [CategoryTheory.MonoidalCategory.DayConvolution H F] [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution H G] : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id H) Ī·) (CategoryTheory.MonoidalCategory.DayConvolution.braiding H G).hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding H F).hom (CategoryTheory.MonoidalCategory.DayConvolution.map Ī· (CategoryTheory.CategoryStruct.id H)) - CategoryTheory.MonoidalCategory.DayConvolution.braiding_naturality_left_assoc š Mathlib.CategoryTheory.Monoidal.DayConvolution.Braided
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.BraidedCategory V] {F G : CategoryTheory.Functor C V} (Ī· : F ā¶ G) (H : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution F H] [CategoryTheory.MonoidalCategory.DayConvolution H F] [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution H G] {Z : CategoryTheory.Functor C V} (h : CategoryTheory.MonoidalCategory.DayConvolution.convolution H G ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map Ī· (CategoryTheory.CategoryStruct.id H)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding G H).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding F H).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id H) Ī·) h) - CategoryTheory.MonoidalCategory.DayConvolution.braiding_naturality_right_assoc š Mathlib.CategoryTheory.Monoidal.DayConvolution.Braided
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.BraidedCategory V] {F G : CategoryTheory.Functor C V} (H : CategoryTheory.Functor C V) (Ī· : F ā¶ G) [CategoryTheory.MonoidalCategory.DayConvolution F H] [CategoryTheory.MonoidalCategory.DayConvolution H F] [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution H G] {Z : CategoryTheory.Functor C V} (h : CategoryTheory.MonoidalCategory.DayConvolution.convolution G H ā¶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id H) Ī·) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding H G).hom h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding H F).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map Ī· (CategoryTheory.CategoryStruct.id H)) h) - CategoryTheory.MonoidalCategory.DayConvolution.hexagon_forward š Mathlib.CategoryTheory.Monoidal.DayConvolution.Braided
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.BraidedCategory V] (F G : CategoryTheory.Functor C V) [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorRight v)] (H : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution F G] [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H)] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H] [CategoryTheory.MonoidalCategory.DayConvolution H F] [CategoryTheory.MonoidalCategory.DayConvolution G (CategoryTheory.MonoidalCategory.DayConvolution.convolution H F)] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H) F] [CategoryTheory.MonoidalCategory.DayConvolution G F] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution G F) H] [CategoryTheory.MonoidalCategory.DayConvolution F H] [CategoryTheory.MonoidalCategory.DayConvolution G (CategoryTheory.MonoidalCategory.DayConvolution.convolution F H)] : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator F G H).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H)).hom (CategoryTheory.MonoidalCategory.DayConvolution.associator G H F).hom) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.MonoidalCategory.DayConvolution.braiding F G).hom (CategoryTheory.CategoryStruct.id H)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator G F H).hom (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id G) (CategoryTheory.MonoidalCategory.DayConvolution.braiding F H).hom)) - CategoryTheory.MonoidalCategory.DayConvolution.hexagon_reverse š Mathlib.CategoryTheory.Monoidal.DayConvolution.Braided
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.BraidedCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.BraidedCategory V] (F G : CategoryTheory.Functor C V) [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorLeft v)] [ā (v : V) (d : C), CategoryTheory.Limits.PreservesColimitsOfShape (CategoryTheory.CostructuredArrow (CategoryTheory.MonoidalCategory.tensor C) d) (CategoryTheory.MonoidalCategory.tensorRight v)] (H : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution F G] [CategoryTheory.MonoidalCategory.DayConvolution G H] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution G H)] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H] [CategoryTheory.MonoidalCategory.DayConvolution H (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G)] [CategoryTheory.MonoidalCategory.DayConvolution H F] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution H F) G] [CategoryTheory.MonoidalCategory.DayConvolution H G] [CategoryTheory.MonoidalCategory.DayConvolution F (CategoryTheory.MonoidalCategory.DayConvolution.convolution H G)] [CategoryTheory.MonoidalCategory.DayConvolution F H] [CategoryTheory.MonoidalCategory.DayConvolution (CategoryTheory.MonoidalCategory.DayConvolution.convolution F H) G] : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator F G H).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.braiding (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H).hom (CategoryTheory.MonoidalCategory.DayConvolution.associator H F G).inv) = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) (CategoryTheory.MonoidalCategory.DayConvolution.braiding G H).hom) (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.associator F H G).inv (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.MonoidalCategory.DayConvolution.braiding F H).hom (CategoryTheory.CategoryStruct.id G))) - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.left_triangle_components š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F H : CategoryTheory.Functor C V} (G : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution F G] (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H) [CategoryTheory.MonoidalCategory.DayConvolution F H] : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) ā.coev_app) ā.ev_app = CategoryTheory.CategoryStruct.id (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_naturality_app š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F H G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G] (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H) {G' H' : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G'] (Ī· : G ā¶ G') (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G') H') : CategoryTheory.CategoryStruct.comp Ī· ā'.coev_app = CategoryTheory.CategoryStruct.comp ā.coev_app (ā.map (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) Ī·) ā') - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.ev_naturality_app š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F G H : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F H] (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G H) {G' H' : CategoryTheory.Functor C V} (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G' H') [CategoryTheory.MonoidalCategory.DayConvolution F H'] (Ī· : G ā¶ G') : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) (ā.map Ī· ā')) ā'.ev_app = CategoryTheory.CategoryStruct.comp ā.ev_app Ī·
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65