Loogle!
Result
Found 6 declarations mentioning CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map.
- CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F G H : CategoryTheory.Functor C V} (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G H) {G' H' : CategoryTheory.Functor C V} (f : G ā¶ G') (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G' H') : H ā¶ H' - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.right_triangle_components š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F H : CategoryTheory.Functor C V} (G : CategoryTheory.Functor C V) [CategoryTheory.MonoidalCategory.DayConvolution F H] (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G H) {H' : CategoryTheory.Functor C V} (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F (CategoryTheory.MonoidalCategory.DayConvolution.convolution F H) H') : CategoryTheory.CategoryStruct.comp ā'.coev_app (ā'.map ā.ev_app ā) = CategoryTheory.CategoryStruct.id H - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.coev_naturality_app š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F H G : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G] (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G) H) {G' H' : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F G'] (Ī· : G ā¶ G') (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F (CategoryTheory.MonoidalCategory.DayConvolution.convolution F G') H') : CategoryTheory.CategoryStruct.comp Ī· ā'.coev_app = CategoryTheory.CategoryStruct.comp ā.coev_app (ā.map (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) Ī·) ā') - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.ev_naturality_app š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F G H : CategoryTheory.Functor C V} [CategoryTheory.MonoidalCategory.DayConvolution F H] (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G H) {G' H' : CategoryTheory.Functor C V} (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G' H') [CategoryTheory.MonoidalCategory.DayConvolution F H'] (Ī· : G ā¶ G') : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategory.DayConvolution.map (CategoryTheory.CategoryStruct.id F) (ā.map Ī· ā')) ā'.ev_app = CategoryTheory.CategoryStruct.comp ā.ev_app Ī· - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_app_comp_Ļ š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F G H : CategoryTheory.Functor C V} (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G H) {G' H' : CategoryTheory.Functor C V} (f : G ā¶ G') (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G' H') (c j : C) : CategoryTheory.CategoryStruct.comp ((ā.map f ā').app c) (ā'.Ļ c j) = CategoryTheory.CategoryStruct.comp (ā.Ļ c j) ((CategoryTheory.ihom (F.obj j)).map (f.app (CategoryTheory.MonoidalCategoryStruct.tensorObj j c))) - CategoryTheory.MonoidalCategory.DayConvolutionInternalHom.map_app_comp_Ļ_assoc š Mathlib.CategoryTheory.Monoidal.DayConvolution.Closed
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {V : Type uā} [CategoryTheory.Category.{vā, uā} V] [CategoryTheory.MonoidalCategory C] [CategoryTheory.MonoidalCategory V] [CategoryTheory.MonoidalClosed V] {F G H : CategoryTheory.Functor C V} (ā : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G H) {G' H' : CategoryTheory.Functor C V} (f : G ā¶ G') (ā' : CategoryTheory.MonoidalCategory.DayConvolutionInternalHom F G' H') (c j : C) {Z : V} (h : (CategoryTheory.ihom (F.obj j)).obj (G'.obj (CategoryTheory.MonoidalCategoryStruct.tensorObj j c)) ā¶ Z) : CategoryTheory.CategoryStruct.comp ((ā.map f ā').app c) (CategoryTheory.CategoryStruct.comp (ā'.Ļ c j) h) = CategoryTheory.CategoryStruct.comp (ā.Ļ c j) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.ihom (F.obj j)).map (f.app (CategoryTheory.MonoidalCategoryStruct.tensorObj j c))) h)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65