Loogle!
Result
Found 10 declarations mentioning CategoryTheory.MorphismProperty.Over.map.
- CategoryTheory.MorphismProperty.Over.map đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} {f : X âś Y} [P.IsStableUnderComposition] (hPf : P f) : CategoryTheory.Functor (P.Over Q X) (P.Over Q Y) - CategoryTheory.MorphismProperty.Over.mapPullbackAdj đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] (P Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} (f : X âś Y) [P.IsStableUnderComposition] [P.IsStableUnderBaseChange] [Q.IsStableUnderBaseChange] [CategoryTheory.Limits.HasPullbacks T] [Q.HasOfPostcompProperty Q] (hPf : P f) (hQf : Q f) : CategoryTheory.MorphismProperty.Over.map Q hPf ⣠CategoryTheory.MorphismProperty.Over.pullback P Q f - CategoryTheory.MorphismProperty.Over.map.eq_1 đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} {f : X âś Y} [P.IsStableUnderComposition] (hPf : P f) : CategoryTheory.MorphismProperty.Over.map Q hPf = CategoryTheory.MorphismProperty.Comma.mapRight (CategoryTheory.Functor.id T) (CategoryTheory.Discrete.natTrans fun x => f) ⯠- CategoryTheory.MorphismProperty.Over.map_comp đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X âś Y} (hf : P f) {g : Y âś Z} (hg : P g) : CategoryTheory.MorphismProperty.Over.map Q ⯠= (CategoryTheory.MorphismProperty.Over.map Q hf).comp (CategoryTheory.MorphismProperty.Over.map Q hg) - CategoryTheory.MorphismProperty.Over.map_obj_left đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} {f : X âś Y} [P.IsStableUnderComposition] (hPf : P f) (Xâ : CategoryTheory.MorphismProperty.Comma (CategoryTheory.Functor.id T) (CategoryTheory.Functor.fromPUnit X) P Q â¤) : ((CategoryTheory.MorphismProperty.Over.map Q hPf).obj Xâ).left = Xâ.left - CategoryTheory.MorphismProperty.Over.mapComp đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X âś Y} (hf : P f) {g : Y âś Z} (hg : P g) [Q.RespectsIso] : CategoryTheory.MorphismProperty.Over.map Q ⯠â (CategoryTheory.MorphismProperty.Over.map Q hf).comp (CategoryTheory.MorphismProperty.Over.map Q hg) - CategoryTheory.MorphismProperty.Over.map_obj_hom đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} {f : X âś Y} [P.IsStableUnderComposition] (hPf : P f) (Xâ : CategoryTheory.MorphismProperty.Comma (CategoryTheory.Functor.id T) (CategoryTheory.Functor.fromPUnit X) P Q â¤) : ((CategoryTheory.MorphismProperty.Over.map Q hPf).obj Xâ).hom = CategoryTheory.CategoryStruct.comp Xâ.hom f - CategoryTheory.MorphismProperty.Over.mapComp_hom_app_left đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X âś Y} (hf : P f) {g : Y âś Z} (hg : P g) [Q.RespectsIso] (Xâ : P.Over Q X) : ((CategoryTheory.MorphismProperty.Over.mapComp Q hf hg).hom.app Xâ).left = CategoryTheory.CategoryStruct.id Xâ.left - CategoryTheory.MorphismProperty.Over.mapComp_inv_app_left đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] [P.IsStableUnderComposition] {X Y Z : T} {f : X âś Y} (hf : P f) {g : Y âś Z} (hg : P g) [Q.RespectsIso] (Xâ : P.Over Q X) : ((CategoryTheory.MorphismProperty.Over.mapComp Q hf hg).inv.app Xâ).left = CategoryTheory.CategoryStruct.id Xâ.left - CategoryTheory.MorphismProperty.Over.map_map_left đ Mathlib.CategoryTheory.MorphismProperty.OverAdjunction
{T : Type u_1} [CategoryTheory.Category.{u_2, u_1} T] {P : CategoryTheory.MorphismProperty T} (Q : CategoryTheory.MorphismProperty T) [Q.IsMultiplicative] {X Y : T} {f : X âś Y} [P.IsStableUnderComposition] (hPf : P f) {Xâ Yâ : CategoryTheory.MorphismProperty.Comma (CategoryTheory.Functor.id T) (CategoryTheory.Functor.fromPUnit X) P Q â¤} (fâ : Xâ âś Yâ) : ((CategoryTheory.MorphismProperty.Over.map Q hPf).map fâ).left = (CategoryTheory.MorphismProperty.Comma.Hom.hom fâ).left
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
đReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
đ"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
đ_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
đReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
đ(?a -> ?b) -> List ?a -> List ?b
đList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
đ|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allâ
andâ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
đ|- _ < _ â tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
đ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ â _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08