Loogle!
Result
Found 86 declarations mentioning CategoryTheory.Over.map.
- CategoryTheory.Over.map π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f : X βΆ Y) : CategoryTheory.Functor (CategoryTheory.Over X) (CategoryTheory.Over Y) - CategoryTheory.Over.mapId_eq π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] (Y : T) : CategoryTheory.Over.map (CategoryTheory.CategoryStruct.id Y) = CategoryTheory.Functor.id (CategoryTheory.Over Y) - CategoryTheory.Over.instIsEquivalenceMapOfIsIso π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} {f : X βΆ Y} [CategoryTheory.IsIso f] : (CategoryTheory.Over.map f).IsEquivalence - CategoryTheory.Over.mapFunctor_map π Mathlib.CategoryTheory.Comma.Over.Basic
(T : Type uβ) [CategoryTheory.Category.{vβ, uβ} T] {Xβ Yβ : T} (f : Xβ βΆ Yβ) : (CategoryTheory.Over.mapFunctor T).map f = CategoryTheory.Over.map f - CategoryTheory.Over.mapForget_eq π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f : X βΆ Y) : (CategoryTheory.Over.map f).comp (CategoryTheory.Over.forget Y) = CategoryTheory.Over.forget X - CategoryTheory.Over.mapId π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] (Y : T) : CategoryTheory.Over.map (CategoryTheory.CategoryStruct.id Y) β CategoryTheory.Functor.id (CategoryTheory.Over Y) - CategoryTheory.Over.mapIso_functor π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f : X β Y) : (CategoryTheory.Over.mapIso f).functor = CategoryTheory.Over.map f.hom - CategoryTheory.Over.mapIso_inverse π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f : X β Y) : (CategoryTheory.Over.mapIso f).inverse = CategoryTheory.Over.map f.inv - CategoryTheory.Over.mapForget π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f : X βΆ Y) : (CategoryTheory.Over.map f).comp (CategoryTheory.Over.forget Y) β CategoryTheory.Over.forget X - CategoryTheory.Over.map.eq_1 π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f : X βΆ Y) : CategoryTheory.Over.map f = CategoryTheory.Comma.mapRight (CategoryTheory.Functor.id T) (CategoryTheory.Discrete.natTrans fun x => f) - CategoryTheory.Over.map_obj_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} {f : X βΆ Y} {U : CategoryTheory.Over X} : ((CategoryTheory.Over.map f).obj U).left = U.left - CategoryTheory.Over.mapCongr π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f g : X βΆ Y) (h : f = g) : CategoryTheory.Over.map f β CategoryTheory.Over.map g - CategoryTheory.Over.mapComp_eq π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y Z : T} (f : X βΆ Y) (g : Y βΆ Z) : CategoryTheory.Over.map (CategoryTheory.CategoryStruct.comp f g) = (CategoryTheory.Over.map f).comp (CategoryTheory.Over.map g) - CategoryTheory.Over.mapComp π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y Z : T} (f : X βΆ Y) (g : Y βΆ Z) : CategoryTheory.Over.map (CategoryTheory.CategoryStruct.comp f g) β (CategoryTheory.Over.map f).comp (CategoryTheory.Over.map g) - CategoryTheory.Over.mapCongr_rfl π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f : X βΆ Y) : CategoryTheory.Over.mapCongr f f β― = CategoryTheory.Iso.refl (CategoryTheory.Over.map f) - CategoryTheory.Over.postCongr π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {X : T} {F G : CategoryTheory.Functor T D} (e : F β G) : (CategoryTheory.Over.post F).comp (CategoryTheory.Over.map (e.hom.app X)) β CategoryTheory.Over.post G - CategoryTheory.Over.postAdjunctionRight π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {Y : D} {F : CategoryTheory.Functor T D} {G : CategoryTheory.Functor D T} (a : F β£ G) : (CategoryTheory.Over.post F).comp (CategoryTheory.Over.map (a.counit.app Y)) β£ CategoryTheory.Over.post G - CategoryTheory.Over.map_map_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} {f : X βΆ Y} {U V : CategoryTheory.Over X} {g : U βΆ V} : ((CategoryTheory.Over.map f).map g).left = g.left - CategoryTheory.Over.map_obj_hom π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} {f : X βΆ Y} {U : CategoryTheory.Over X} : ((CategoryTheory.Over.map f).obj U).hom = CategoryTheory.CategoryStruct.comp U.hom f - CategoryTheory.Over.postMap π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {X : T} {F G : CategoryTheory.Functor T D} (e : F βΆ G) : (CategoryTheory.Over.post F).comp (CategoryTheory.Over.map (e.app X)) βΆ CategoryTheory.Over.post G - CategoryTheory.Over.mapId_hom_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] (Y : T) (X : CategoryTheory.Over Y) : ((CategoryTheory.Over.mapId Y).hom.app X).left = CategoryTheory.CategoryStruct.id X.left - CategoryTheory.Over.mapId_inv_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] (Y : T) (X : CategoryTheory.Over Y) : ((CategoryTheory.Over.mapId Y).inv.app X).left = CategoryTheory.CategoryStruct.id X.left - CategoryTheory.Over.mapCongr_hom_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f g : X βΆ Y) (h : f = g) (Xβ : CategoryTheory.Over X) : ((CategoryTheory.Over.mapCongr f g h).hom.app Xβ).left = CategoryTheory.CategoryStruct.id Xβ.left - CategoryTheory.Over.mapCongr_inv_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f g : X βΆ Y) (h : f = g) (Xβ : CategoryTheory.Over X) : ((CategoryTheory.Over.mapCongr f g h).inv.app Xβ).left = CategoryTheory.CategoryStruct.id Xβ.left - CategoryTheory.Over.postEquiv_inverse π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (X : T) (F : T β D) : (CategoryTheory.Over.postEquiv X F).inverse = (CategoryTheory.Over.post F.inverse).comp (CategoryTheory.Over.map (F.unitIso.inv.app X)) - CategoryTheory.Over.mapComp_hom_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y Z : T} (f : X βΆ Y) (g : Y βΆ Z) (Xβ : CategoryTheory.Over X) : ((CategoryTheory.Over.mapComp f g).hom.app Xβ).left = CategoryTheory.CategoryStruct.id Xβ.left - CategoryTheory.Over.mapComp_inv_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y Z : T} (f : X βΆ Y) (g : Y βΆ Z) (Xβ : CategoryTheory.Over X) : ((CategoryTheory.Over.mapComp f g).inv.app Xβ).left = CategoryTheory.CategoryStruct.id Xβ.left - CategoryTheory.Over.postMap_app π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {X : T} {F G : CategoryTheory.Functor T D} (e : F βΆ G) (Y : CategoryTheory.Over X) : (CategoryTheory.Over.postMap e).app Y = CategoryTheory.Over.homMk (e.app Y.left) β― - CategoryTheory.Over.postCongr_hom_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {X : T} {F G : CategoryTheory.Functor T D} (e : F β G) (Xβ : CategoryTheory.Over X) : ((CategoryTheory.Over.postCongr e).hom.app Xβ).left = e.hom.app Xβ.left - CategoryTheory.Over.postCongr_inv_app_left π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {X : T} {F G : CategoryTheory.Functor T D} (e : F β G) (Xβ : CategoryTheory.Over X) : ((CategoryTheory.Over.postCongr e).inv.app Xβ).left = e.inv.app Xβ.left - CategoryTheory.Over.postEquiv_unitIso π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (X : T) (F : T β D) : (CategoryTheory.Over.postEquiv X F).unitIso = CategoryTheory.NatIso.ofComponents (fun A => CategoryTheory.Over.isoMk (F.unitIso.app A.left) β―) β― - CategoryTheory.Over.postAdjunctionRight_unit_app π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {Y : D} {F : CategoryTheory.Functor T D} {G : CategoryTheory.Functor D T} (a : F β£ G) (A : CategoryTheory.Over (G.obj Y)) : (CategoryTheory.Over.postAdjunctionRight a).unit.app A = CategoryTheory.Over.homMk (a.unit.app A.left) β― - CategoryTheory.Over.postAdjunctionRight_counit_app π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {Y : D} {F : CategoryTheory.Functor T D} {G : CategoryTheory.Functor D T} (a : F β£ G) (A : CategoryTheory.Over ((CategoryTheory.Functor.id D).obj Y)) : (CategoryTheory.Over.postAdjunctionRight a).counit.app A = CategoryTheory.Over.homMk (a.counit.app A.left) β― - CategoryTheory.Over.postEquiv_counitIso π Mathlib.CategoryTheory.Comma.Over.Basic
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (X : T) (F : T β D) : (CategoryTheory.Over.postEquiv X F).counitIso = CategoryTheory.NatIso.ofComponents (fun A => CategoryTheory.Over.isoMk (F.counitIso.app A.left) β―) β― - CategoryTheory.Over.mapPullbackAdj π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (f : X βΆ Y) [CategoryTheory.Limits.HasPullbacksAlong f] : CategoryTheory.Over.map f β£ CategoryTheory.Over.pullback f - CategoryTheory.Over.forgetMapTerminal π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] (X : C) {T : C} (hT : CategoryTheory.Limits.IsTerminal T) : CategoryTheory.Over.forget X β (CategoryTheory.Over.map (hT.from X)).comp (CategoryTheory.Over.equivalenceOfIsTerminal hT).functor - CategoryTheory.Over.forgetMapTerminal_hom_app π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] (X : C) {T : C} (hT : CategoryTheory.Limits.IsTerminal T) (Xβ : CategoryTheory.Over X) : (CategoryTheory.Over.forgetMapTerminal X hT).hom.app Xβ = CategoryTheory.CategoryStruct.id Xβ.left - CategoryTheory.Over.forgetMapTerminal_inv_app π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] (X : C) {T : C} (hT : CategoryTheory.Limits.IsTerminal T) (Xβ : CategoryTheory.Over X) : (CategoryTheory.Over.forgetMapTerminal X hT).inv.app Xβ = CategoryTheory.CategoryStruct.id Xβ.left - CategoryTheory.Over.mapPullbackAdj_unit_app π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (f : X βΆ Y) [CategoryTheory.Limits.HasPullbacksAlong f] (Xβ : CategoryTheory.Over X) : (CategoryTheory.Over.mapPullbackAdj f).unit.app Xβ = CategoryTheory.Over.homMk (CategoryTheory.Limits.pullback.lift (CategoryTheory.CategoryStruct.id Xβ.left) Xβ.hom β―) β― - CategoryTheory.Over.mapPullbackAdj_counit_app π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (f : X βΆ Y) [CategoryTheory.Limits.HasPullbacksAlong f] (Yβ : CategoryTheory.Over Y) : (CategoryTheory.Over.mapPullbackAdj f).counit.app Yβ = CategoryTheory.Over.homMk (CategoryTheory.Limits.pullback.fst Yβ.hom f) β― - CategoryTheory.Over.postAdjunctionLeft_counit_app_left π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.Limits.HasPullbacks C] {X : C} {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (a : F β£ G) (Y : CategoryTheory.Over ((CategoryTheory.Functor.id D).obj (F.obj X))) : ((CategoryTheory.Over.postAdjunctionLeft a).counit.app Y).left = ((((CategoryTheory.Over.mapPullbackAdj (a.unit.app X)).comp (CategoryTheory.Over.postAdjunctionRight a)).homEquiv ((CategoryTheory.Over.pullback (a.unit.app X)).obj (CategoryTheory.Over.mk (G.map Y.hom))) Y).symm (CategoryTheory.CategoryStruct.id ((CategoryTheory.Over.pullback (a.unit.app X)).obj (CategoryTheory.Over.mk (G.map Y.hom))))).left - CategoryTheory.Over.postAdjunctionLeft_unit_app_left π Mathlib.CategoryTheory.Comma.Over.Pullback
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.Limits.HasPullbacks C] {X : C} {F : CategoryTheory.Functor C D} {G : CategoryTheory.Functor D C} (a : F β£ G) (Xβ : CategoryTheory.Over ((CategoryTheory.Functor.id C).obj X)) : ((CategoryTheory.Over.postAdjunctionLeft a).unit.app Xβ).left = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.lift (CategoryTheory.CategoryStruct.id Xβ.left) Xβ.hom β―) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.lift (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (CategoryTheory.CategoryStruct.comp Xβ.hom (a.unit.app X)) (a.unit.app X)) (a.unit.app Xβ.left)) (CategoryTheory.Limits.pullback.snd (CategoryTheory.CategoryStruct.comp Xβ.hom (a.unit.app X)) (a.unit.app X)) β―) (CategoryTheory.Limits.pullback.lift (CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst (G.map (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.CategoryStruct.comp Xβ.hom (a.unit.app X))) (a.counit.app (F.obj X)))) (a.unit.app X)) (G.map ((CategoryTheory.Adjunction.equivHomsetLeftOfNatIso (CategoryTheory.NatIso.ofComponents (fun Y => CategoryTheory.Over.isoMk (CategoryTheory.Iso.refl (F.obj Y.left)) β―) β―).symm) (CategoryTheory.CategoryStruct.id (CategoryTheory.Over.mk (F.map Xβ.hom)))).left)) (CategoryTheory.Limits.pullback.snd (G.map (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.CategoryStruct.comp Xβ.hom (a.unit.app X))) (a.counit.app (F.obj X)))) (a.unit.app X)) β―)) - CategoryTheory.Over.preservesColimitsOfSize_map π Mathlib.CategoryTheory.Limits.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} [CategoryTheory.Limits.HasColimitsOfSize.{w, w', v, u} C] {Y : C} (f : X βΆ Y) : CategoryTheory.Limits.PreservesColimitsOfSize.{w, w', v, v, max u v, max u v} (CategoryTheory.Over.map f) - CategoryTheory.Over.createsColimitsOfSizeMapCompForget π Mathlib.CategoryTheory.Limits.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (f : X βΆ Y) : CategoryTheory.CreatesColimitsOfSize.{w, w', v, v, max u v, u} ((CategoryTheory.Over.map f).comp (CategoryTheory.Over.forget Y)) - CategoryTheory.GrothendieckTopology.over_map_compatiblePreserving π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {X Y : C} (f : X βΆ Y) : CategoryTheory.CompatiblePreserving (J.over Y) (CategoryTheory.Over.map f) - CategoryTheory.GrothendieckTopology.instIsContinuousOverMapOver π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {X Y : C} (f : X βΆ Y) : (CategoryTheory.Over.map f).IsContinuous (J.over X) (J.over Y) - CategoryTheory.GrothendieckTopology.over_map_coverPreserving π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) {X Y : C} (f : X βΆ Y) : CategoryTheory.CoverPreserving (J.over X) (J.over Y) (CategoryTheory.Over.map f) - CategoryTheory.Over.mapCongr.congr_simp π Mathlib.CategoryTheory.Sites.Over
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y : T} (f g : X βΆ Y) (h : f = g) : CategoryTheory.Over.mapCongr f g h = CategoryTheory.Over.mapCongr f g h - CategoryTheory.Sieve.functorPushforward_over_map π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] {X Y : C} (f : X βΆ Y) (Z : CategoryTheory.Over X) (S : CategoryTheory.Sieve Z.left) : CategoryTheory.Sieve.functorPushforward (CategoryTheory.Over.map f) ((CategoryTheory.Sieve.overEquiv Z).symm S) = (CategoryTheory.Sieve.overEquiv ((CategoryTheory.Over.map f).obj Z)).symm S - CategoryTheory.GrothendieckTopology.overMapPullbackCongr_hom_app_val_app π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {X Y : C} {f g : X βΆ Y} (h : f = g) (M : CategoryTheory.Sheaf (J.over Y) A) (Xβ : (CategoryTheory.Over X)α΅α΅) : ((J.overMapPullbackCongr A h).hom.app M).val.app Xβ = M.val.map ((CategoryTheory.Over.mapCongr f g h).inv.app (Opposite.unop Xβ)).op - CategoryTheory.GrothendieckTopology.overMapPullbackCongr_inv_app_val_app π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {X Y : C} {f g : X βΆ Y} (h : f = g) (M : CategoryTheory.Sheaf (J.over Y) A) (Xβ : (CategoryTheory.Over X)α΅α΅) : ((J.overMapPullbackCongr A h).inv.app M).val.app Xβ = M.val.map ((CategoryTheory.Over.mapCongr f g h).hom.app (Opposite.unop Xβ)).op - CategoryTheory.GrothendieckTopology.overMapPullbackId_hom_app_val_app π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] (X : C) (Xβ : CategoryTheory.Sheaf (J.over X) A) (XβΒΉ : (CategoryTheory.Over X)α΅α΅) : ((J.overMapPullbackId A X).hom.app Xβ).val.app XβΒΉ = Xβ.val.map ((CategoryTheory.Over.mapId X).inv.app (Opposite.unop XβΒΉ)).op - CategoryTheory.GrothendieckTopology.overMapPullbackId_inv_app_val_app π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] (X : C) (Xβ : CategoryTheory.Sheaf (J.over X) A) (XβΒΉ : (CategoryTheory.Over X)α΅α΅) : ((J.overMapPullbackId A X).inv.app Xβ).val.app XβΒΉ = Xβ.val.map ((CategoryTheory.Over.mapId X).hom.app (Opposite.unop XβΒΉ)).op - CategoryTheory.GrothendieckTopology.overMapPullbackComp_hom_app_val_app π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {X Y Z : C} (f : X βΆ Y) (g : Y βΆ Z) (Xβ : CategoryTheory.Sheaf (J.over Z) A) (XβΒΉ : (CategoryTheory.Over X)α΅α΅) : ((J.overMapPullbackComp A f g).hom.app Xβ).val.app XβΒΉ = Xβ.val.map ((CategoryTheory.Over.mapComp f g).hom.app (Opposite.unop XβΒΉ)).op - CategoryTheory.GrothendieckTopology.overMapPullbackComp_inv_app_val_app π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {X Y Z : C} (f : X βΆ Y) (g : Y βΆ Z) (Xβ : CategoryTheory.Sheaf (J.over Z) A) (XβΒΉ : (CategoryTheory.Over X)α΅α΅) : ((J.overMapPullbackComp A f g).inv.app Xβ).val.app XβΒΉ = Xβ.val.map ((CategoryTheory.Over.mapComp f g).inv.app (Opposite.unop XβΒΉ)).op - CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} {instβ : CategoryTheory.Category.{vβ, uβ} C} {Y X : C} (f : Y βΆ X) [self : CategoryTheory.ChosenPullbacksAlong f] : CategoryTheory.Over.map f β£ CategoryTheory.ChosenPullbacksAlong.pullback f - CategoryTheory.ChosenPullbacksAlong.mk π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y X : C} {f : Y βΆ X} (pullback : CategoryTheory.Functor (CategoryTheory.Over X) (CategoryTheory.Over Y)) (mapPullbackAdj : CategoryTheory.Over.map f β£ pullback) : CategoryTheory.ChosenPullbacksAlong f - CategoryTheory.ChosenPullbacksAlong.ofHasPullbacksAlong_mapPullbackAdj π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y X : C} (f : Y βΆ X) [CategoryTheory.Limits.HasPullbacksAlong f] : CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f = CategoryTheory.Over.mapPullbackAdj f - CategoryTheory.ChosenPullbacksAlong.fst' π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y Z X : C} (f : Y βΆ X) (g : Z βΆ X) [CategoryTheory.ChosenPullbacksAlong g] : (CategoryTheory.Over.map g).obj ((CategoryTheory.ChosenPullbacksAlong.pullback g).obj (CategoryTheory.Over.mk f)) βΆ CategoryTheory.Over.mk f - CategoryTheory.ChosenPullbacksAlong.snd' π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y Z X : C} (f : Y βΆ X) (g : Z βΆ X) [CategoryTheory.ChosenPullbacksAlong g] : (CategoryTheory.Over.map g).obj ((CategoryTheory.ChosenPullbacksAlong.pullback g).obj (CategoryTheory.Over.mk f)) βΆ CategoryTheory.Over.mk g - CategoryTheory.ChosenPullbacksAlong.id_mapPullbackAdj π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] (X : C) : CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj (CategoryTheory.CategoryStruct.id X) = CategoryTheory.Adjunction.id.ofNatIsoLeft (CategoryTheory.Over.mapId X).symm - CategoryTheory.ChosenPullbacksAlong.fst'_left π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y Z X : C} (f : Y βΆ X) (g : Z βΆ X) [CategoryTheory.ChosenPullbacksAlong g] : (CategoryTheory.ChosenPullbacksAlong.fst' f g).left = CategoryTheory.ChosenPullbacksAlong.fst f g - CategoryTheory.ChosenPullbacksAlong.snd'_left π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y Z X : C} (f : Y βΆ X) (g : Z βΆ X) [CategoryTheory.ChosenPullbacksAlong g] : (CategoryTheory.ChosenPullbacksAlong.snd' f g).left = CategoryTheory.ChosenPullbacksAlong.snd f g - CategoryTheory.ChosenPullbacksAlong.comp_mapPullbackAdj π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Z Y X : C} (f : Y βΆ X) (g : Z βΆ Y) [CategoryTheory.ChosenPullbacksAlong f] [CategoryTheory.ChosenPullbacksAlong g] : CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj (CategoryTheory.CategoryStruct.comp g f) = ((CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj g).comp (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f)).ofNatIsoLeft (CategoryTheory.Over.mapComp g f).symm - CategoryTheory.ChosenPullbacksAlong.lift.eq_1 π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y Z X : C} {f : Y βΆ X} {g : Z βΆ X} [CategoryTheory.ChosenPullbacksAlong g] {W : C} (a : W βΆ Y) (b : W βΆ Z) (h : CategoryTheory.CategoryStruct.comp a f = CategoryTheory.CategoryStruct.comp b g) : CategoryTheory.ChosenPullbacksAlong.lift a b h = (((CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj g).homEquiv (CategoryTheory.Over.mk b) (CategoryTheory.Over.mk f)) (CategoryTheory.Over.homMk a β―)).left - CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_unit_app_left π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y X : C} (f : Y β X) (T : CategoryTheory.Over X) : ((CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f.inv).unit.app T).left = CategoryTheory.CategoryStruct.id T.left - CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_unit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y X : C} (f : Y β X) (T : CategoryTheory.Over Y) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f.hom).unit.app T = CategoryTheory.Over.homMk (CategoryTheory.CategoryStruct.id T.left) β― - CategoryTheory.ChosenPullbacksAlong.iso_mapPullbackAdj_counit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y X : C} (f : Y β X) (U : CategoryTheory.Over X) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f.hom).counit.app U = CategoryTheory.Over.homMk (CategoryTheory.CategoryStruct.id (({ obj := fun Z => CategoryTheory.Over.mk (CategoryTheory.CategoryStruct.comp Z.hom f.inv), map := fun {Y_1 Z} g => CategoryTheory.Over.homMk g.left β―, map_id := β―, map_comp := β― }.comp (CategoryTheory.Over.map f.hom)).obj U).left) β― - CategoryTheory.ChosenPullbacksAlong.isoInv_mapPullbackAdj_counit_app_left π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {Y X : C} (f : Y β X) (U : CategoryTheory.Over Y) : ((CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f.inv).counit.app U).left = CategoryTheory.CategoryStruct.id U.left - CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_counit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.CartesianMonoidalCategory C] (X Y : C) (U : CategoryTheory.Over Y) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj (CategoryTheory.SemiCartesianMonoidalCategory.snd X Y)).counit.app U = CategoryTheory.Over.homMk (CategoryTheory.SemiCartesianMonoidalCategory.snd X ((CategoryTheory.Functor.id C).obj U.left)) β― - CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_unit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.CartesianMonoidalCategory C] {X : C} (f : X βΆ CategoryTheory.MonoidalCategoryStruct.tensorUnit C) (T : CategoryTheory.Over X) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f).unit.app T = CategoryTheory.Over.homMk (CategoryTheory.CartesianMonoidalCategory.lift (CategoryTheory.CategoryStruct.id ((CategoryTheory.Functor.id (CategoryTheory.Over X)).obj T).left) T.hom) β― - CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_counit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.CartesianMonoidalCategory C] (X Y : C) (U : CategoryTheory.Over X) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj (CategoryTheory.SemiCartesianMonoidalCategory.fst X Y)).counit.app U = CategoryTheory.Over.homMk (CategoryTheory.SemiCartesianMonoidalCategory.fst ((CategoryTheory.Functor.id C).obj U.left) Y) β― - CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryToUnit_mapPullbackAdj_counit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.CartesianMonoidalCategory C] {X : C} (f : X βΆ CategoryTheory.MonoidalCategoryStruct.tensorUnit C) (U : CategoryTheory.Over (CategoryTheory.MonoidalCategoryStruct.tensorUnit C)) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj f).counit.app U = CategoryTheory.Over.homMk (CategoryTheory.SemiCartesianMonoidalCategory.fst U.left X) β― - CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategorySnd_mapPullbackAdj_unit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.CartesianMonoidalCategory C] (X Y : C) (T : CategoryTheory.Over (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y)) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj (CategoryTheory.SemiCartesianMonoidalCategory.snd X Y)).unit.app T = CategoryTheory.Over.homMk (CategoryTheory.CartesianMonoidalCategory.lift (CategoryTheory.CategoryStruct.comp T.hom (CategoryTheory.SemiCartesianMonoidalCategory.fst X Y)) (CategoryTheory.CategoryStruct.id ((CategoryTheory.Functor.id (CategoryTheory.Over (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y))).obj T).left)) β― - CategoryTheory.ChosenPullbacksAlong.cartesianMonoidalCategoryFst_mapPullbackAdj_unit_app π Mathlib.CategoryTheory.LocallyCartesianClosed.ChosenPullbacksAlong
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [CategoryTheory.CartesianMonoidalCategory C] (X Y : C) (T : CategoryTheory.Over (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y)) : (CategoryTheory.ChosenPullbacksAlong.mapPullbackAdj (CategoryTheory.SemiCartesianMonoidalCategory.fst X Y)).unit.app T = CategoryTheory.Over.homMk (CategoryTheory.CartesianMonoidalCategory.lift (CategoryTheory.CategoryStruct.id ((CategoryTheory.Functor.id (CategoryTheory.Over (CategoryTheory.MonoidalCategoryStruct.tensorObj X Y))).obj T).left) (CategoryTheory.CategoryStruct.comp T.hom (CategoryTheory.SemiCartesianMonoidalCategory.snd X Y))) β― - CategoryTheory.Pseudofunctor.overMapCompPresheafHomIso π Mathlib.CategoryTheory.Sites.Descent.IsPrestack
{C : Type u} [CategoryTheory.Category.{v, u} C] (F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete Cα΅α΅) CategoryTheory.Cat) {S : C} (M N : β(F.obj { as := Opposite.op S })) {S' : C} (q : S' βΆ S) : (CategoryTheory.Over.map q).op.comp (F.presheafHom M N) β F.presheafHom ((F.map q.op.toLoc).obj M) ((F.map q.op.toLoc).obj N) - CategoryTheory.Over.mapId.eq_1 π Mathlib.CategoryTheory.Sites.SheafHom
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] (Y : T) : CategoryTheory.Over.mapId Y = CategoryTheory.NatIso.ofComponents (fun x => CategoryTheory.Over.isoMk (CategoryTheory.Iso.refl ((CategoryTheory.Over.map (CategoryTheory.CategoryStruct.id Y)).obj x).left) β―) β― - CategoryTheory.Over.mapComp.eq_1 π Mathlib.CategoryTheory.Sites.SheafHom
{T : Type uβ} [CategoryTheory.Category.{vβ, uβ} T] {X Y Z : T} (f : X βΆ Y) (g : Y βΆ Z) : CategoryTheory.Over.mapComp f g = CategoryTheory.NatIso.ofComponents (fun x => CategoryTheory.Over.isoMk (CategoryTheory.Iso.refl ((CategoryTheory.Over.map (CategoryTheory.CategoryStruct.comp f g)).obj x).left) β―) β― - CategoryTheory.presheafHom.eq_1 π Mathlib.CategoryTheory.Sites.Monoidal
{C : Type u} [CategoryTheory.Category.{v, u} C] {A : Type u'} [CategoryTheory.Category.{v', u'} A] (F G : CategoryTheory.Functor Cα΅α΅ A) : CategoryTheory.presheafHom F G = { obj := fun X => (CategoryTheory.Over.forget (Opposite.unop X)).op.comp F βΆ (CategoryTheory.Over.forget (Opposite.unop X)).op.comp G, map := fun {X Y} f => (CategoryTheory.Over.map f.unop).op.whiskerLeft, map_id := β―, map_comp := β― } - CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_obj_val_obj π Mathlib.CategoryTheory.Sites.PseudofunctorSheafOver
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {Xβ Yβ : CategoryTheory.LocallyDiscrete Cα΅α΅} (f : Xβ βΆ Yβ) (β± : CategoryTheory.Sheaf (J.over (Opposite.unop Xβ.as)) A) (X : (CategoryTheory.Over (Opposite.unop Yβ.as))α΅α΅) : (((J.pseudofunctorOver A).map f).obj β±).val.obj X = β±.val.obj (Opposite.op ((CategoryTheory.Over.map f.as.unop).obj (Opposite.unop X))) - CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_obj_val_map π Mathlib.CategoryTheory.Sites.PseudofunctorSheafOver
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {Xβ Yβ : CategoryTheory.LocallyDiscrete Cα΅α΅} (f : Xβ βΆ Yβ) (β± : CategoryTheory.Sheaf (J.over (Opposite.unop Xβ.as)) A) {XβΒΉ YβΒΉ : (CategoryTheory.Over (Opposite.unop Yβ.as))α΅α΅} (fβ : XβΒΉ βΆ YβΒΉ) : (((J.pseudofunctorOver A).map f).obj β±).val.map fβ = β±.val.map ((CategoryTheory.Over.map f.as.unop).map fβ.unop).op - CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_hom_app_val_app π Mathlib.CategoryTheory.Sites.PseudofunctorSheafOver
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] (xβ : CategoryTheory.LocallyDiscrete Cα΅α΅) (X : CategoryTheory.Sheaf (J.over (Opposite.unop xβ.as)) A) (Xβ : (CategoryTheory.Over (Opposite.unop xβ.as))α΅α΅) : (((J.pseudofunctorOver A).mapId xβ).hom.app X).val.app Xβ = X.val.map ((CategoryTheory.Over.mapId (Opposite.unop xβ.as)).inv.app (Opposite.unop Xβ)).op - CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapId_inv_app_val_app π Mathlib.CategoryTheory.Sites.PseudofunctorSheafOver
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] (xβ : CategoryTheory.LocallyDiscrete Cα΅α΅) (X : CategoryTheory.Sheaf (J.over (Opposite.unop xβ.as)) A) (Xβ : (CategoryTheory.Over (Opposite.unop xβ.as))α΅α΅) : (((J.pseudofunctorOver A).mapId xβ).inv.app X).val.app Xβ = X.val.map ((CategoryTheory.Over.mapId (Opposite.unop xβ.as)).hom.app (Opposite.unop Xβ)).op - CategoryTheory.GrothendieckTopology.pseudofunctorOver_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_map_val_app π Mathlib.CategoryTheory.Sites.PseudofunctorSheafOver
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {Xβ Yβ : CategoryTheory.LocallyDiscrete Cα΅α΅} (f : Xβ βΆ Yβ) {XβΒΉ YβΒΉ : CategoryTheory.Sheaf (J.over (Opposite.unop Xβ.as)) A} (fβ : XβΒΉ βΆ YβΒΉ) (X : (CategoryTheory.Over (Opposite.unop Yβ.as))α΅α΅) : (((J.pseudofunctorOver A).map f).map fβ).val.app X = fβ.val.app (Opposite.op ((CategoryTheory.Over.map f.as.unop).obj (Opposite.unop X))) - CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_hom_app_val_app π Mathlib.CategoryTheory.Sites.PseudofunctorSheafOver
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {aβ bβ cβ : CategoryTheory.LocallyDiscrete Cα΅α΅} (xβ : aβ βΆ bβ) (xβΒΉ : bβ βΆ cβ) (X : CategoryTheory.Sheaf (J.over (Opposite.unop aβ.as)) A) (Xβ : (CategoryTheory.Over (Opposite.unop cβ.as))α΅α΅) : (((J.pseudofunctorOver A).mapComp xβ xβΒΉ).hom.app X).val.app Xβ = X.val.map ((CategoryTheory.Over.mapComp xβΒΉ.as.unop xβ.as.unop).inv.app (Opposite.unop Xβ)).op - CategoryTheory.GrothendieckTopology.pseudofunctorOver_mapComp_inv_app_val_app π Mathlib.CategoryTheory.Sites.PseudofunctorSheafOver
{C : Type u} [CategoryTheory.Category.{v, u} C] (J : CategoryTheory.GrothendieckTopology C) (A : Type u') [CategoryTheory.Category.{v', u'} A] {aβ bβ cβ : CategoryTheory.LocallyDiscrete Cα΅α΅} (xβ : aβ βΆ bβ) (xβΒΉ : bβ βΆ cβ) (X : CategoryTheory.Sheaf (J.over (Opposite.unop aβ.as)) A) (Xβ : (CategoryTheory.Over (Opposite.unop cβ.as))α΅α΅) : (((J.pseudofunctorOver A).mapComp xβ xβΒΉ).inv.app X).val.app Xβ = X.val.map ((CategoryTheory.Over.mapComp xβΒΉ.as.unop xβ.as.unop).hom.app (Opposite.unop Xβ)).op
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c