Loogle!
Result
Found 13 declarations mentioning CategoryTheory.PreOneHypercover.map.
- CategoryTheory.PreOneHypercover.map ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) : CategoryTheory.PreOneHypercover (F.obj X) - CategoryTheory.PreOneHypercover.map_Iโ ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) : (E.map F).Iโ = E.Iโ - CategoryTheory.PreOneHypercover.map_Iโ ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) (iโ iโ : E.Iโ) : (E.map F).Iโ iโ iโ = E.Iโ iโ iโ - CategoryTheory.PreOneHypercover.map_X ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) (i : E.Iโ) : (E.map F).X i = F.obj (E.X i) - CategoryTheory.PreOneHypercover.map_Y ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) (xโ xโยน : E.Iโ) (j : E.Iโ xโ xโยน) : (E.map F).Y j = F.obj (E.Y j) - CategoryTheory.GrothendieckTopology.OneHypercover.map_toPreOneHypercover ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {J : CategoryTheory.GrothendieckTopology C} {X : C} (E : J.OneHypercover X) (F : CategoryTheory.Functor C D) (K : CategoryTheory.GrothendieckTopology D) [E.IsPreservedBy F K] : (E.map F K).toPreOneHypercover = E.map F - CategoryTheory.PreOneHypercover.map_f ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) (i : E.Iโ) : (E.map F).f i = F.map (E.f i) - CategoryTheory.PreOneHypercover.map_pโ ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) (xโ xโยน : E.Iโ) (j : E.Iโ xโ xโยน) : (E.map F).pโ j = F.map (E.pโ j) - CategoryTheory.PreOneHypercover.map_pโ ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) (xโ xโยน : E.Iโ) (j : E.Iโ xโ xโยน) : (E.map F).pโ j = F.map (E.pโ j) - CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.memโ ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} {instโ : CategoryTheory.Category.{vโ, uโ} C} {D : Type uโ} {instโยน : CategoryTheory.Category.{vโ, uโ} D} {J : CategoryTheory.GrothendieckTopology C} {X : C} {E : J.OneHypercover X} {F : CategoryTheory.Functor C D} {K : CategoryTheory.GrothendieckTopology D} [self : E.IsPreservedBy F K] : (E.map F).sieveโ โ K (F.obj X) - CategoryTheory.PreOneHypercover.isLimitMapMultiforkEquiv ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {X : C} (E : CategoryTheory.PreOneHypercover X) (F : CategoryTheory.Functor C D) {A : Type u} [CategoryTheory.Category.{t, u} A] (P : CategoryTheory.Functor Dแตแต A) : CategoryTheory.Limits.IsLimit ((E.map F).multifork P) โ CategoryTheory.Limits.IsLimit (E.multifork (F.op.comp P)) - CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.memโ ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} {instโ : CategoryTheory.Category.{vโ, uโ} C} {D : Type uโ} {instโยน : CategoryTheory.Category.{vโ, uโ} D} {J : CategoryTheory.GrothendieckTopology C} {X : C} {E : J.OneHypercover X} {F : CategoryTheory.Functor C D} {K : CategoryTheory.GrothendieckTopology D} [self : E.IsPreservedBy F K] (iโ iโ : E.Iโ) โฆW : Dโฆ (pโ : W โถ F.obj (E.X iโ)) (pโ : W โถ F.obj (E.X iโ)) (w : CategoryTheory.CategoryStruct.comp pโ (F.map (E.f iโ)) = CategoryTheory.CategoryStruct.comp pโ (F.map (E.f iโ))) : (E.map F).sieveโ pโ pโ โ K W - CategoryTheory.GrothendieckTopology.OneHypercover.IsPreservedBy.mk ๐ Mathlib.CategoryTheory.Sites.Continuous
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {J : CategoryTheory.GrothendieckTopology C} {X : C} {E : J.OneHypercover X} {F : CategoryTheory.Functor C D} {K : CategoryTheory.GrothendieckTopology D} (memโ : (E.map F).sieveโ โ K (F.obj X)) (memโ : โ (iโ iโ : E.Iโ) โฆW : Dโฆ (pโ : W โถ F.obj (E.X iโ)) (pโ : W โถ F.obj (E.X iโ)), CategoryTheory.CategoryStruct.comp pโ (F.map (E.f iโ)) = CategoryTheory.CategoryStruct.comp pโ (F.map (E.f iโ)) โ (E.map F).sieveโ pโ pโ โ K W) : E.IsPreservedBy F K
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65