Loogle!
Result
Found 14 declarations mentioning CategoryTheory.Presieve.FamilyOfElements.map.
- CategoryTheory.Presieve.FamilyOfElements.compPresheafMap_id š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (x : CategoryTheory.Presieve.FamilyOfElements P R) : x.map (CategoryTheory.CategoryStruct.id P) = x - CategoryTheory.Presieve.FamilyOfElements.map_id š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (x : CategoryTheory.Presieve.FamilyOfElements P R) : x.map (CategoryTheory.CategoryStruct.id P) = x - CategoryTheory.Presieve.FamilyOfElements.map š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (p : CategoryTheory.Presieve.FamilyOfElements P R) (Ļ : P ā¶ Q) : CategoryTheory.Presieve.FamilyOfElements Q R - CategoryTheory.Presieve.FamilyOfElements.Compatible.compPresheafMap š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (f : P ā¶ Q) {x : CategoryTheory.Presieve.FamilyOfElements P R} (h : x.Compatible) : (x.map f).Compatible - CategoryTheory.Presieve.FamilyOfElements.Compatible.map š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (f : P ā¶ Q) {x : CategoryTheory.Presieve.FamilyOfElements P R} (h : x.Compatible) : (x.map f).Compatible - CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation.compPresheafMap š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} {x : CategoryTheory.Presieve.FamilyOfElements P R} {t : P.obj (Opposite.op X)} (f : P ā¶ Q) (h : x.IsAmalgamation t) : (x.map f).IsAmalgamation (f.app (Opposite.op X) t) - CategoryTheory.Presieve.FamilyOfElements.IsAmalgamation.map š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} {x : CategoryTheory.Presieve.FamilyOfElements P R} {t : P.obj (Opposite.op X)} (f : P ā¶ Q) (h : x.IsAmalgamation t) : (x.map f).IsAmalgamation (f.app (Opposite.op X) t) - CategoryTheory.Presieve.FamilyOfElements.map_apply š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (p : CategoryTheory.Presieve.FamilyOfElements P R) (Ļ : P ā¶ Q) {Y : C} (f : Y ā¶ X) (hf : R f) : p.map Ļ f hf = Ļ.app (Opposite.op Y) (p f hf) - CategoryTheory.Presieve.FamilyOfElements.restrict_map š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (p : CategoryTheory.Presieve.FamilyOfElements P R) (Ļ : P ā¶ Q) {R' : CategoryTheory.Presieve X} (h : R' ⤠R) : (CategoryTheory.Presieve.FamilyOfElements.restrict h p).map Ļ = CategoryTheory.Presieve.FamilyOfElements.restrict h (p.map Ļ) - CategoryTheory.Presieve.FamilyOfElements.compPresheafMap_comp š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q U : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (x : CategoryTheory.Presieve.FamilyOfElements P R) (f : P ā¶ Q) (g : Q ā¶ U) : (x.map f).map g = x.map (CategoryTheory.CategoryStruct.comp f g) - CategoryTheory.Presieve.FamilyOfElements.map_comp š Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {P Q U : CategoryTheory.Functor Cįµįµ (Type w)} {X : C} {R : CategoryTheory.Presieve X} (x : CategoryTheory.Presieve.FamilyOfElements P R) (f : P ā¶ Q) (g : Q ā¶ U) : (x.map f).map g = x.map (CategoryTheory.CategoryStruct.comp f g) - CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_map_localPreimage š Mathlib.CategoryTheory.Sites.LocallySurjective
{C : Type u} [CategoryTheory.Category.{v, u} C] {R R' : CategoryTheory.Functor Cįµįµ (Type w)} (Ļ : R ā¶ R') {X : Cįµįµ} (r' : R'.obj X) : ((CategoryTheory.Presieve.FamilyOfElements.localPreimage Ļ r').map Ļ).IsAmalgamation r' - CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul š Mathlib.Algebra.Category.ModuleCat.Presheaf.Sheafify
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {J : CategoryTheory.GrothendieckTopology C} {Rā R : CategoryTheory.Functor Cįµįµ RingCat} (α : Rā ā¶ R) [CategoryTheory.Presheaf.IsLocallyInjective J α] {Mā : PresheafOfModules Rā} {A : CategoryTheory.Functor Cįµįµ AddCommGrpCat} (Ļ : Mā.presheaf ā¶ A) [CategoryTheory.Presheaf.IsLocallyInjective J Ļ] (hA : CategoryTheory.Presheaf.IsSeparated J A) {X : C} (r : ā(R.obj (Opposite.op X))) (m : ā(A.obj (Opposite.op X))) {P : CategoryTheory.Presieve X} (rā : CategoryTheory.Presieve.FamilyOfElements (Rā.comp (CategoryTheory.forget RingCat)) P) (mā : CategoryTheory.Presieve.FamilyOfElements (Mā.presheaf.comp (CategoryTheory.forget Ab)) P) (hrā : (rā.map (CategoryTheory.Functor.whiskerRight α (CategoryTheory.forget RingCat))).IsAmalgamation r) (hmā : (mā.map (CategoryTheory.Functor.whiskerRight Ļ (CategoryTheory.forget Ab))).IsAmalgamation m) : ((rā.smul mā).map (CategoryTheory.Functor.whiskerRight Ļ (CategoryTheory.forget Ab))).Compatible - PresheafOfModules.Sheafify.SMulCandidate.mk' š Mathlib.Algebra.Category.ModuleCat.Presheaf.Sheafify
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {J : CategoryTheory.GrothendieckTopology C} {Rā : CategoryTheory.Functor Cįµįµ RingCat} {R : CategoryTheory.Sheaf J RingCat} (α : Rā ā¶ R.val) [CategoryTheory.Presheaf.IsLocallyInjective J α] {Mā : PresheafOfModules Rā} {A : CategoryTheory.Sheaf J AddCommGrpCat} (Ļ : Mā.presheaf ā¶ A.val) [CategoryTheory.Presheaf.IsLocallyInjective J Ļ] {X : Cįµįµ} (r : ā(R.val.obj X)) (m : ā(A.val.obj X)) (S : CategoryTheory.Sieve (Opposite.unop X)) (hS : S ā J (Opposite.unop X)) (rā : CategoryTheory.Presieve.FamilyOfElements (Rā.comp (CategoryTheory.forget RingCat)) S.arrows) (mā : CategoryTheory.Presieve.FamilyOfElements (Mā.presheaf.comp (CategoryTheory.forget Ab)) S.arrows) (hrā : (rā.map (CategoryTheory.Functor.whiskerRight α (CategoryTheory.forget RingCat))).IsAmalgamation r) (hmā : (mā.map (CategoryTheory.Functor.whiskerRight Ļ (CategoryTheory.forget Ab))).IsAmalgamation m) (a : ā(A.val.obj X)) (ha : ((rā.smul mā).map (CategoryTheory.Functor.whiskerRight Ļ (CategoryTheory.forget Ab))).IsAmalgamation a) : PresheafOfModules.Sheafify.SMulCandidate α Ļ r m
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177