Loogle!
Result
Found 6 declarations mentioning CategoryTheory.Presieve.FamilyOfElements.map.
- CategoryTheory.Presieve.FamilyOfElements.map ๐ Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {P Q : CategoryTheory.Functor Cแตแต (Type w)} {X : C} {R : CategoryTheory.Presieve X} (p : CategoryTheory.Presieve.FamilyOfElements P R) (ฯ : P โถ Q) : CategoryTheory.Presieve.FamilyOfElements Q R - CategoryTheory.Presieve.FamilyOfElements.map_apply ๐ Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {P Q : CategoryTheory.Functor Cแตแต (Type w)} {X : C} {R : CategoryTheory.Presieve X} (p : CategoryTheory.Presieve.FamilyOfElements P R) (ฯ : P โถ Q) {Y : C} (f : Y โถ X) (hf : R f) : p.map ฯ f hf = ฯ.app (Opposite.op Y) (p f hf) - CategoryTheory.Presieve.FamilyOfElements.restrict_map ๐ Mathlib.CategoryTheory.Sites.IsSheafFor
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {P Q : CategoryTheory.Functor Cแตแต (Type w)} {X : C} {R : CategoryTheory.Presieve X} (p : CategoryTheory.Presieve.FamilyOfElements P R) (ฯ : P โถ Q) {R' : CategoryTheory.Presieve X} (h : R' โค R) : (CategoryTheory.Presieve.FamilyOfElements.restrict h p).map ฯ = CategoryTheory.Presieve.FamilyOfElements.restrict h (p.map ฯ) - CategoryTheory.Presieve.FamilyOfElements.isAmalgamation_map_localPreimage ๐ Mathlib.CategoryTheory.Sites.LocallySurjective
{C : Type u} [CategoryTheory.Category.{v, u} C] {R R' : CategoryTheory.Functor Cแตแต (Type w)} (ฯ : R โถ R') {X : Cแตแต} (r' : R'.obj X) : ((CategoryTheory.Presieve.FamilyOfElements.localPreimage ฯ r').map ฯ).IsAmalgamation r' - CategoryTheory.Presieve.FamilyOfElements.isCompatible_map_smul ๐ Mathlib.Algebra.Category.ModuleCat.Presheaf.Sheafify
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {J : CategoryTheory.GrothendieckTopology C} {Rโ R : CategoryTheory.Functor Cแตแต RingCat} (ฮฑ : Rโ โถ R) [CategoryTheory.Presheaf.IsLocallyInjective J ฮฑ] {Mโ : PresheafOfModules Rโ} {A : CategoryTheory.Functor Cแตแต AddCommGrp} (ฯ : Mโ.presheaf โถ A) [CategoryTheory.Presheaf.IsLocallyInjective J ฯ] (hA : CategoryTheory.Presheaf.IsSeparated J A) {X : C} (r : โ(R.obj (Opposite.op X))) (m : โ(A.obj (Opposite.op X))) {P : CategoryTheory.Presieve X} (rโ : CategoryTheory.Presieve.FamilyOfElements (Rโ.comp (CategoryTheory.forget RingCat)) P) (mโ : CategoryTheory.Presieve.FamilyOfElements (Mโ.presheaf.comp (CategoryTheory.forget Ab)) P) (hrโ : (rโ.map (CategoryTheory.whiskerRight ฮฑ (CategoryTheory.forget RingCat))).IsAmalgamation r) (hmโ : (mโ.map (CategoryTheory.whiskerRight ฯ (CategoryTheory.forget Ab))).IsAmalgamation m) : ((rโ.smul mโ).map (CategoryTheory.whiskerRight ฯ (CategoryTheory.forget Ab))).Compatible - PresheafOfModules.Sheafify.SMulCandidate.mk' ๐ Mathlib.Algebra.Category.ModuleCat.Presheaf.Sheafify
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {J : CategoryTheory.GrothendieckTopology C} {Rโ : CategoryTheory.Functor Cแตแต RingCat} {R : CategoryTheory.Sheaf J RingCat} (ฮฑ : Rโ โถ R.val) [CategoryTheory.Presheaf.IsLocallyInjective J ฮฑ] {Mโ : PresheafOfModules Rโ} {A : CategoryTheory.Sheaf J AddCommGrp} (ฯ : Mโ.presheaf โถ A.val) [CategoryTheory.Presheaf.IsLocallyInjective J ฯ] {X : Cแตแต} (r : โ(R.val.obj X)) (m : โ(A.val.obj X)) (S : CategoryTheory.Sieve (Opposite.unop X)) (hS : S โ J (Opposite.unop X)) (rโ : CategoryTheory.Presieve.FamilyOfElements (Rโ.comp (CategoryTheory.forget RingCat)) S.arrows) (mโ : CategoryTheory.Presieve.FamilyOfElements (Mโ.presheaf.comp (CategoryTheory.forget Ab)) S.arrows) (hrโ : (rโ.map (CategoryTheory.whiskerRight ฮฑ (CategoryTheory.forget RingCat))).IsAmalgamation r) (hmโ : (mโ.map (CategoryTheory.whiskerRight ฯ (CategoryTheory.forget Ab))).IsAmalgamation m) (a : โ(A.val.obj X)) (ha : ((rโ.smul mโ).map (CategoryTheory.whiskerRight ฯ (CategoryTheory.forget Ab))).IsAmalgamation a) : PresheafOfModules.Sheafify.SMulCandidate ฮฑ ฯ r m
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08