Loogle!
Result
Found 13 declarations mentioning CategoryTheory.Presieve.map.
- CategoryTheory.Presieve.map π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) {X : C} (s : CategoryTheory.Presieve X) : CategoryTheory.Presieve (F.obj X) - CategoryTheory.Presieve.map_id π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {X : C} (R : CategoryTheory.Presieve X) : CategoryTheory.Presieve.map (CategoryTheory.Functor.id C) R = R - CategoryTheory.Presieve.map_map π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {F : CategoryTheory.Functor C D} {X Y : C} {f : Y βΆ X} {R : CategoryTheory.Presieve X} (hf : R f) : CategoryTheory.Presieve.map F R (F.map f) - CategoryTheory.Presieve.map.of π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {F : CategoryTheory.Functor C D} {X : C} {s : CategoryTheory.Presieve X} {Y : C} {u : Y βΆ X} (h : s u) : CategoryTheory.Presieve.map F s (F.map u) - CategoryTheory.Sieve.generate_map_eq_functorPushforward π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) {X : C} {s : CategoryTheory.Presieve X} : CategoryTheory.Sieve.generate (CategoryTheory.Presieve.map F s) = CategoryTheory.Sieve.functorPushforward F (CategoryTheory.Sieve.generate s) - CategoryTheory.Sieve.arrows_generate_map_eq_functorPushforward π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) {X : C} {s : CategoryTheory.Presieve X} : (CategoryTheory.Sieve.generate (CategoryTheory.Presieve.map F s)).arrows = CategoryTheory.Presieve.functorPushforward F s - CategoryTheory.Presieve.map_singleton π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {F : CategoryTheory.Functor C D} {X Y : C} (f : X βΆ Y) : CategoryTheory.Presieve.map F (CategoryTheory.Presieve.singleton f) = CategoryTheory.Presieve.singleton (F.map f) - CategoryTheory.Presieve.map_ofArrows π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {F : CategoryTheory.Functor C D} {X : C} {ΞΉ : Type u_1} {Y : ΞΉ β C} (f : (i : ΞΉ) β Y i βΆ X) : CategoryTheory.Presieve.map F (CategoryTheory.Presieve.ofArrows Y f) = CategoryTheory.Presieve.ofArrows (fun i => F.obj (Y i)) fun i => F.map (f i) - CategoryTheory.Presieve.map_functorPullback π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {F : CategoryTheory.Functor C D} {X : C} (R : CategoryTheory.Presieve (F.obj X)) : CategoryTheory.Presieve.map F (CategoryTheory.Presieve.functorPullback F R) β€ R - CategoryTheory.Presieve.map_monotone π Mathlib.CategoryTheory.Sites.Sieves
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {F : CategoryTheory.Functor C D} {X : C} {R S : CategoryTheory.Presieve X} (h : R β€ S) : CategoryTheory.Presieve.map F R β€ CategoryTheory.Presieve.map F S - CategoryTheory.Precoverage.mem_comap_iff π Mathlib.CategoryTheory.Sites.Precoverage
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {F : CategoryTheory.Functor C D} {J : CategoryTheory.Precoverage D} {X : C} {R : CategoryTheory.Presieve X} : R β (CategoryTheory.Precoverage.comap F J).coverings X β CategoryTheory.Presieve.map F R β J.coverings (F.obj X) - CategoryTheory.PreZeroHypercover.presieveβ_map π Mathlib.CategoryTheory.Sites.Hypercover.Zero
{C : Type u} [CategoryTheory.Category.{v, u} C] {S : C} (E : CategoryTheory.PreZeroHypercover S) {D : Type u_1} [CategoryTheory.Category.{u_2, u_1} D] {F : CategoryTheory.Functor C D} : (CategoryTheory.PreZeroHypercover.map F E).presieveβ = CategoryTheory.Presieve.map F E.presieveβ - CategoryTheory.Presieve.map_functorPullback_overForget π Mathlib.CategoryTheory.Sites.Over
{C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : CategoryTheory.Over X} (R : CategoryTheory.Presieve Y.left) : CategoryTheory.Presieve.map (CategoryTheory.Over.forget X) (CategoryTheory.Presieve.functorPullback (CategoryTheory.Over.forget X) R) = R
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177