Loogle!
Result
Found 14 declarations mentioning CategoryTheory.Pseudofunctor.Grothendieck.map.
- CategoryTheory.Pseudofunctor.Grothendieck.map_id_eq š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] (F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat) : CategoryTheory.Pseudofunctor.Grothendieck.map (CategoryTheory.CategoryStruct.id F) = CategoryTheory.Functor.id F.Grothendieck - CategoryTheory.Pseudofunctor.Grothendieck.map š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) : CategoryTheory.Functor F.Grothendieck G.Grothendieck - CategoryTheory.Pseudofunctor.Grothendieck.mapIdIso š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] (F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat) : CategoryTheory.Pseudofunctor.Grothendieck.map (CategoryTheory.CategoryStruct.id F) ā CategoryTheory.Functor.id F.Grothendieck - CategoryTheory.Pseudofunctor.Grothendieck.map_comp_forget š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) : (CategoryTheory.Pseudofunctor.Grothendieck.map α).comp (CategoryTheory.Pseudofunctor.Grothendieck.forget G) = CategoryTheory.Pseudofunctor.Grothendieck.forget F - CategoryTheory.Pseudofunctor.Grothendieck.map_obj_base š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) (a : F.Grothendieck) : ((CategoryTheory.Pseudofunctor.Grothendieck.map α).obj a).base = a.base - CategoryTheory.Pseudofunctor.Grothendieck.map_comp_eq š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G H : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) (β : G ā¶ H) : CategoryTheory.Pseudofunctor.Grothendieck.map (CategoryTheory.CategoryStruct.comp α β) = (CategoryTheory.Pseudofunctor.Grothendieck.map α).comp (CategoryTheory.Pseudofunctor.Grothendieck.map β) - CategoryTheory.Pseudofunctor.Grothendieck.mapCompIso š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G H : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) (β : G ā¶ H) : CategoryTheory.Pseudofunctor.Grothendieck.map (CategoryTheory.CategoryStruct.comp α β) ā (CategoryTheory.Pseudofunctor.Grothendieck.map α).comp (CategoryTheory.Pseudofunctor.Grothendieck.map β) - CategoryTheory.Pseudofunctor.Grothendieck.map_id_map š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} {x y : F.Grothendieck} (f : x ā¶ y) : (CategoryTheory.Pseudofunctor.Grothendieck.map (CategoryTheory.CategoryStruct.id F)).map f = f - CategoryTheory.Pseudofunctor.Grothendieck.mapIdIso.eq_1 š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] (F : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat) : CategoryTheory.Pseudofunctor.Grothendieck.mapIdIso F = CategoryTheory.NatIso.ofComponents (fun x => CategoryTheory.eqToIso āÆ) ⯠- CategoryTheory.Pseudofunctor.Grothendieck.mapCompIso.eq_1 š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G H : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) (β : G ā¶ H) : CategoryTheory.Pseudofunctor.Grothendieck.mapCompIso α β = CategoryTheory.NatIso.ofComponents (fun x => CategoryTheory.eqToIso āÆ) ⯠- CategoryTheory.Pseudofunctor.Grothendieck.map_obj_fiber š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) (a : F.Grothendieck) : ((CategoryTheory.Pseudofunctor.Grothendieck.map α).obj a).fiber = (α.app { as := Opposite.op a.base }).obj a.fiber - CategoryTheory.Pseudofunctor.Grothendieck.map_map_base š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) {a b : F.Grothendieck} (f : a ā¶ b) : ((CategoryTheory.Pseudofunctor.Grothendieck.map α).map f).base = f.base - CategoryTheory.Pseudofunctor.Grothendieck.map.eq_1 š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) : CategoryTheory.Pseudofunctor.Grothendieck.map α = { obj := fun a => { base := a.base, fiber := (α.app { as := Opposite.op a.base }).obj a.fiber }, map := fun {a b} f => { base := f.base, fiber := CategoryTheory.CategoryStruct.comp ((α.app { as := Opposite.op a.base }).map f.fiber) ((α.naturality f.base.op.toLoc).hom.app b.fiber) }, map_id := āÆ, map_comp := ⯠} - CategoryTheory.Pseudofunctor.Grothendieck.map_map_fiber š Mathlib.CategoryTheory.Bicategory.Grothendieck
{š® : Type uā} [CategoryTheory.Category.{vā, uā} š®] {F G : CategoryTheory.Pseudofunctor (CategoryTheory.LocallyDiscrete š®įµįµ) CategoryTheory.Cat} (α : F ā¶ G) {a b : F.Grothendieck} (f : a ā¶ b) : ((CategoryTheory.Pseudofunctor.Grothendieck.map α).map f).fiber = CategoryTheory.CategoryStruct.comp ((α.app { as := Opposite.op a.base }).map f.fiber) ((α.naturality f.base.op.toLoc).hom.app b.fiber)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65