Loogle!
Result
Found 15 declarations mentioning CategoryTheory.Pseudofunctor.ObjectProperty.map.
- CategoryTheory.Pseudofunctor.ObjectProperty.map 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y : B} (f : X ⟶ Y) : CategoryTheory.Functor (P.Obj X) (P.Obj Y) - CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_toPrefunctor_map_toFunctor 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X✝ Y✝ : B} (f : X✝ ⟶ Y✝) : (P.fullsubcategory.map f).toFunctor = P.map f - CategoryTheory.Pseudofunctor.ObjectProperty.mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] (X : B) : P.map (CategoryTheory.CategoryStruct.id X) ≅ CategoryTheory.Functor.id (P.Obj X) - CategoryTheory.Pseudofunctor.ObjectProperty.mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y Z : B} (f : X ⟶ Y) (g : Y ⟶ Z) : P.map (CategoryTheory.CategoryStruct.comp f g) ≅ (P.map f).comp (P.map g) - CategoryTheory.Pseudofunctor.ObjectProperty.map_obj_obj 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y : B} (f : X ⟶ Y) (X✝ : P.Obj X) : ((P.map f).obj X✝).obj = (F.map f).toFunctor.obj X✝.obj - CategoryTheory.Pseudofunctor.ObjectProperty.map₂ 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y : B} {f g : X ⟶ Y} (α : f ⟶ g) : P.map f ⟶ P.map g - CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_toPrelaxFunctor_toPrelaxFunctorStruct_map₂_toNatTrans 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {a✝ b✝ : B} {f✝ g✝ : a✝ ⟶ b✝} (α : f✝ ⟶ g✝) : (P.fullsubcategory.map₂ α).toNatTrans = P.map₂ α - CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] (X : B) : P.fullsubcategory.mapId X = CategoryTheory.Cat.Hom.isoMk (P.mapId X) - CategoryTheory.Pseudofunctor.ObjectProperty.mapId_hom_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X : B} (M : P.Obj X) : (P.mapId X).hom.app M = CategoryTheory.ObjectProperty.homMk ((F.mapId X).hom.toNatTrans.app M.obj) - CategoryTheory.Pseudofunctor.ObjectProperty.mapId_inv_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X : B} (M : P.Obj X) : (P.mapId X).inv.app M = CategoryTheory.ObjectProperty.homMk ((F.mapId X).inv.toNatTrans.app M.obj) - CategoryTheory.Pseudofunctor.ObjectProperty.fullsubcategory_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : P.fullsubcategory.mapComp f g = CategoryTheory.Cat.Hom.isoMk (P.mapComp f g) - CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_hom_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y Z : B} (f : X ⟶ Y) (g : Y ⟶ Z) (M : P.Obj X) : (P.mapComp f g).hom.app M = CategoryTheory.ObjectProperty.homMk ((F.mapComp f g).hom.toNatTrans.app M.obj) - CategoryTheory.Pseudofunctor.ObjectProperty.mapComp_inv_app 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y Z : B} (f : X ⟶ Y) (g : Y ⟶ Z) (M : P.Obj X) : (P.mapComp f g).inv.app M = CategoryTheory.ObjectProperty.homMk ((F.mapComp f g).inv.toNatTrans.app M.obj) - CategoryTheory.Pseudofunctor.ObjectProperty.map_map_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y : B} (f : X ⟶ Y) {X✝ Y✝ : P.Obj X} (f✝ : X✝ ⟶ Y✝) : ((P.map f).map f✝).hom = (F.map f).toFunctor.map f✝.hom - CategoryTheory.Pseudofunctor.ObjectProperty.map₂_app_hom 📋 Mathlib.CategoryTheory.Bicategory.Functor.Cat.ObjectProperty
{B : Type u} [CategoryTheory.Bicategory B] {F : CategoryTheory.Pseudofunctor B CategoryTheory.Cat} (P : F.ObjectProperty) [P.IsClosedUnderMapObj] {X Y : B} {f g : X ⟶ Y} (α : f ⟶ g) (X✝ : P.Obj X) : ((P.map₂ α).app X✝).hom = (F.map₂ α).toNatTrans.app X✝.obj
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 36960b0 serving mathlib revision 9a4cf1d