Loogle!
Result
Found 89 declarations mentioning Quiver.Hom and CategoryTheory.ShortComplex.Exact. Of these, 4 match your pattern(s).
- CategoryTheory.ShortComplex.Exact.desc 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Preadditive C] {S : CategoryTheory.ShortComplex C} [CategoryTheory.Balanced C] (hS : S.Exact) {A : C} (k : S.X₂ ⟶ A) (hk : CategoryTheory.CategoryStruct.comp S.f k = 0) [CategoryTheory.Epi S.g] : S.X₃ ⟶ A - CategoryTheory.ShortComplex.Exact.lift 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Preadditive C] {S : CategoryTheory.ShortComplex C} [CategoryTheory.Balanced C] (hS : S.Exact) {A : C} (k : A ⟶ S.X₂) (hk : CategoryTheory.CategoryStruct.comp k S.g = 0) [CategoryTheory.Mono S.f] : A ⟶ S.X₁ - CategoryTheory.ShortComplex.Exact.descToInjective 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Abelian C] {S : CategoryTheory.ShortComplex C} (hS : S.Exact) {J : C} (f : S.X₂ ⟶ J) [CategoryTheory.Injective J] (hf : CategoryTheory.CategoryStruct.comp S.f f = 0) : S.X₃ ⟶ J - CategoryTheory.ShortComplex.Exact.liftFromProjective 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} [CategoryTheory.Category.{v_1, u_1} C] [CategoryTheory.Abelian C] {S : CategoryTheory.ShortComplex C} (hS : S.Exact) {P : C} (f : P ⟶ S.X₂) [CategoryTheory.Projective P] (hf : CategoryTheory.CategoryStruct.comp f S.g = 0) : P ⟶ S.X₁
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision abad10c