Loogle!
Result
Found 21 declarations mentioning CategoryTheory.ShortComplex.RightHomologyData.map.
- CategoryTheory.ShortComplex.RightHomologyData.map ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (S.map F).RightHomologyData - CategoryTheory.ShortComplex.RightHomologyData.map_H ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).H = F.obj h.H - CategoryTheory.ShortComplex.RightHomologyData.map_Q ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).Q = F.obj h.Q - CategoryTheory.ShortComplex.HomologyData.map_right ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.HomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.left.IsPreservedBy F] [h.right.IsPreservedBy F] : (h.map F).right = h.right.map F - CategoryTheory.ShortComplex.RightHomologyData.map_g' ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).g' = F.map h.g' - CategoryTheory.ShortComplex.RightHomologyData.map_p ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).p = F.map h.p - CategoryTheory.ShortComplex.RightHomologyData.map_ฮน ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).ฮน = F.map h.ฮน - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (ฯ : F โถ G) : CategoryTheory.ShortComplex.RightHomologyMapData (S.mapNatTrans ฯ) (h.map F) (h.map G) - CategoryTheory.ShortComplex.map_leftRightHomologyComparison' ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] (hโ : S.LeftHomologyData) (hแตฃ : S.RightHomologyData) [hโ.IsPreservedBy F] [hแตฃ.IsPreservedBy F] : F.map (CategoryTheory.ShortComplex.leftRightHomologyComparison' hโ hแตฃ) = CategoryTheory.ShortComplex.leftRightHomologyComparison' (hโ.map F) (hแตฃ.map F) - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_ฯH ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (ฯ : F โถ G) : (CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h ฯ).ฯH = ฯ.app h.H - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_ฯQ ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (ฯ : F โถ G) : (CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h ฯ).ฯQ = ฯ.app h.Q - CategoryTheory.ShortComplex.RightHomologyData.mapHomologyIso'_eq ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [(S.map F).HasHomology] [F.PreservesRightHomologyOf S] : S.mapHomologyIso' F = (hr.map F).homologyIso โชโซ F.mapIso hr.homologyIso.symm - CategoryTheory.ShortComplex.RightHomologyData.mapOpcyclesIso_eq ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : S.mapOpcyclesIso F = (hr.map F).opcyclesIso โชโซ F.mapIso hr.opcyclesIso.symm - CategoryTheory.ShortComplex.RightHomologyData.mapRightHomologyIso_eq ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : S.mapRightHomologyIso F = (hr.map F).rightHomologyIso โชโซ F.mapIso hr.rightHomologyIso.symm - CategoryTheory.ShortComplex.RightHomologyMapData.map ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {Sโ Sโ : CategoryTheory.ShortComplex C} {ฯ : Sโ โถ Sโ} {hโ : Sโ.RightHomologyData} {hโ : Sโ.RightHomologyData} (ฯ : CategoryTheory.ShortComplex.RightHomologyMapData ฯ hโ hโ) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hโ.IsPreservedBy F] [hโ.IsPreservedBy F] : CategoryTheory.ShortComplex.RightHomologyMapData (F.mapShortComplex.map ฯ) (hโ.map F) (hโ.map F) - CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.HomologyData) (ฯ : F โถ G) : (CategoryTheory.ShortComplex.HomologyMapData.natTransApp h ฯ).right = CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h.right ฯ - CategoryTheory.ShortComplex.RightHomologyData.map_opcyclesMap' ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {Sโ Sโ : CategoryTheory.ShortComplex C} (ฯ : Sโ โถ Sโ) (hrโ : Sโ.RightHomologyData) (hrโ : Sโ.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hrโ.IsPreservedBy F] [hrโ.IsPreservedBy F] : F.map (CategoryTheory.ShortComplex.opcyclesMap' ฯ hrโ hrโ) = CategoryTheory.ShortComplex.opcyclesMap' (F.mapShortComplex.map ฯ) (hrโ.map F) (hrโ.map F) - CategoryTheory.ShortComplex.RightHomologyData.map_rightHomologyMap' ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {Sโ Sโ : CategoryTheory.ShortComplex C} (ฯ : Sโ โถ Sโ) (hrโ : Sโ.RightHomologyData) (hrโ : Sโ.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hrโ.IsPreservedBy F] [hrโ.IsPreservedBy F] : F.map (CategoryTheory.ShortComplex.rightHomologyMap' ฯ hrโ hrโ) = CategoryTheory.ShortComplex.rightHomologyMap' (F.mapShortComplex.map ฯ) (hrโ.map F) (hrโ.map F) - CategoryTheory.ShortComplex.RightHomologyMapData.map_ฯH ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {Sโ Sโ : CategoryTheory.ShortComplex C} {ฯ : Sโ โถ Sโ} {hโ : Sโ.RightHomologyData} {hโ : Sโ.RightHomologyData} (ฯ : CategoryTheory.ShortComplex.RightHomologyMapData ฯ hโ hโ) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hโ.IsPreservedBy F] [hโ.IsPreservedBy F] : (ฯ.map F).ฯH = F.map ฯ.ฯH - CategoryTheory.ShortComplex.RightHomologyMapData.map_ฯQ ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {Sโ Sโ : CategoryTheory.ShortComplex C} {ฯ : Sโ โถ Sโ} {hโ : Sโ.RightHomologyData} {hโ : Sโ.RightHomologyData} (ฯ : CategoryTheory.ShortComplex.RightHomologyMapData ฯ hโ hโ) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hโ.IsPreservedBy F] [hโ.IsPreservedBy F] : (ฯ.map F).ฯQ = F.map ฯ.ฯQ - CategoryTheory.ShortComplex.HomologyMapData.map_right ๐ Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {Sโ Sโ : CategoryTheory.ShortComplex C} {ฯ : Sโ โถ Sโ} {hโ : Sโ.HomologyData} {hโ : Sโ.HomologyData} (ฯ : CategoryTheory.ShortComplex.HomologyMapData ฯ hโ hโ) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hโ.left.IsPreservedBy F] [hโ.right.IsPreservedBy F] [hโ.left.IsPreservedBy F] [hโ.right.IsPreservedBy F] : (ฯ.map F).right = ฯ.right.map F
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65