Loogle!
Result
Found 20 declarations mentioning CategoryTheory.ShortComplex.RightHomologyData.map.
- CategoryTheory.ShortComplex.RightHomologyData.map 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (S.map F).RightHomologyData - CategoryTheory.ShortComplex.RightHomologyData.map_H 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).H = F.obj h.H - CategoryTheory.ShortComplex.RightHomologyData.map_Q 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).Q = F.obj h.Q - CategoryTheory.ShortComplex.HomologyData.map_right 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.HomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.left.IsPreservedBy F] [h.right.IsPreservedBy F] : (h.map F).right = h.right.map F - CategoryTheory.ShortComplex.RightHomologyData.map_g' 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).g' = F.map h.g' - CategoryTheory.ShortComplex.RightHomologyData.map_p 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).p = F.map h.p - CategoryTheory.ShortComplex.RightHomologyData.map_ι 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).ι = F.map h.ι - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (τ : F ⟶ G) : CategoryTheory.ShortComplex.RightHomologyMapData (S.mapNatTrans τ) (h.map F) (h.map G) - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φH 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h τ).φH = τ.app h.H - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φQ 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h τ).φQ = τ.app h.Q - CategoryTheory.ShortComplex.RightHomologyData.mapHomologyIso'_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [(S.map F).HasHomology] [F.PreservesRightHomologyOf S] : S.mapHomologyIso' F = (hr.map F).homologyIso ≪≫ F.mapIso hr.homologyIso.symm - CategoryTheory.ShortComplex.RightHomologyData.mapOpcyclesIso_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : S.mapOpcyclesIso F = (hr.map F).opcyclesIso ≪≫ F.mapIso hr.opcyclesIso.symm - CategoryTheory.ShortComplex.RightHomologyData.mapRightHomologyIso_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : S.mapRightHomologyIso F = (hr.map F).rightHomologyIso ≪≫ F.mapIso hr.rightHomologyIso.symm - CategoryTheory.ShortComplex.RightHomologyMapData.map 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} {φ : S₁ ⟶ S₂} {h₁ : S₁.RightHomologyData} {h₂ : S₂.RightHomologyData} (ψ : CategoryTheory.ShortComplex.RightHomologyMapData φ h₁ h₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h₁.IsPreservedBy F] [h₂.IsPreservedBy F] : CategoryTheory.ShortComplex.RightHomologyMapData (F.mapShortComplex.map φ) (h₁.map F) (h₂.map F) - CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.HomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.HomologyMapData.natTransApp h τ).right = CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h.right τ - CategoryTheory.ShortComplex.RightHomologyData.map_opcyclesMap' 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (hr₁ : S₁.RightHomologyData) (hr₂ : S₂.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hr₁.IsPreservedBy F] [hr₂.IsPreservedBy F] : F.map (CategoryTheory.ShortComplex.opcyclesMap' φ hr₁ hr₂) = CategoryTheory.ShortComplex.opcyclesMap' (F.mapShortComplex.map φ) (hr₁.map F) (hr₂.map F) - CategoryTheory.ShortComplex.RightHomologyData.map_rightHomologyMap' 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (hr₁ : S₁.RightHomologyData) (hr₂ : S₂.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [hr₁.IsPreservedBy F] [hr₂.IsPreservedBy F] : F.map (CategoryTheory.ShortComplex.rightHomologyMap' φ hr₁ hr₂) = CategoryTheory.ShortComplex.rightHomologyMap' (F.mapShortComplex.map φ) (hr₁.map F) (hr₂.map F) - CategoryTheory.ShortComplex.RightHomologyMapData.map_φH 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} {φ : S₁ ⟶ S₂} {h₁ : S₁.RightHomologyData} {h₂ : S₂.RightHomologyData} (ψ : CategoryTheory.ShortComplex.RightHomologyMapData φ h₁ h₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h₁.IsPreservedBy F] [h₂.IsPreservedBy F] : (ψ.map F).φH = F.map ψ.φH - CategoryTheory.ShortComplex.RightHomologyMapData.map_φQ 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} {φ : S₁ ⟶ S₂} {h₁ : S₁.RightHomologyData} {h₂ : S₂.RightHomologyData} (ψ : CategoryTheory.ShortComplex.RightHomologyMapData φ h₁ h₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h₁.IsPreservedBy F] [h₂.IsPreservedBy F] : (ψ.map F).φQ = F.map ψ.φQ - CategoryTheory.ShortComplex.HomologyMapData.map_right 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} {φ : S₁ ⟶ S₂} {h₁ : S₁.HomologyData} {h₂ : S₂.HomologyData} (ψ : CategoryTheory.ShortComplex.HomologyMapData φ h₁ h₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h₁.left.IsPreservedBy F] [h₁.right.IsPreservedBy F] [h₂.left.IsPreservedBy F] [h₂.right.IsPreservedBy F] : (ψ.map F).right = ψ.right.map F
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08