Loogle!
Result
Found 165 declarations mentioning CategoryTheory.ShortComplex.map.
- CategoryTheory.ShortComplex.map 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] : CategoryTheory.ShortComplex D - CategoryTheory.ShortComplex.map_X₁ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] : (S.map F).X₁ = F.obj S.X₁ - CategoryTheory.ShortComplex.map_X₂ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] : (S.map F).X₂ = F.obj S.X₂ - CategoryTheory.ShortComplex.map_X₃ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] : (S.map F).X₃ = F.obj S.X₃ - CategoryTheory.ShortComplex.mapNatIso 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F ≅ G) : S.map F ≅ S.map G - CategoryTheory.ShortComplex.mapNatTrans 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F ⟶ G) : S.map F ⟶ S.map G - CategoryTheory.Functor.mapShortComplex_obj 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] (S : CategoryTheory.ShortComplex C) : F.mapShortComplex.obj S = S.map F - CategoryTheory.ShortComplex.map_f 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] : (S.map F).f = F.map S.f - CategoryTheory.ShortComplex.map_g 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] : (S.map F).g = F.map S.g - CategoryTheory.ShortComplex.mapNatIso_hom 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F ≅ G) : (S.mapNatIso τ).hom = S.mapNatTrans τ.hom - CategoryTheory.ShortComplex.mapNatIso_inv 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F ≅ G) : (S.mapNatIso τ).inv = S.mapNatTrans τ.inv - CategoryTheory.ShortComplex.mapNatTrans_τ₁ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F ⟶ G) : (S.mapNatTrans τ).τ₁ = τ.app S.X₁ - CategoryTheory.ShortComplex.mapNatTrans_τ₂ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F ⟶ G) : (S.mapNatTrans τ).τ₂ = τ.app S.X₂ - CategoryTheory.ShortComplex.mapNatTrans_τ₃ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex C) [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] (τ : F ⟶ G) : (S.mapNatTrans τ).τ₃ = τ.app S.X₃ - CategoryTheory.Functor.mapShortComplex_map_τ₁ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] {X✝ Y✝ : CategoryTheory.ShortComplex C} (φ : X✝ ⟶ Y✝) : (F.mapShortComplex.map φ).τ₁ = F.map φ.τ₁ - CategoryTheory.Functor.mapShortComplex_map_τ₂ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] {X✝ Y✝ : CategoryTheory.ShortComplex C} (φ : X✝ ⟶ Y✝) : (F.mapShortComplex.map φ).τ₂ = F.map φ.τ₂ - CategoryTheory.Functor.mapShortComplex_map_τ₃ 📋 Mathlib.Algebra.Homology.ShortComplex.Basic
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] {X✝ Y✝ : CategoryTheory.ShortComplex C} (φ : X✝ ⟶ Y✝) : (F.mapShortComplex.map φ).τ₃ = F.map φ.τ₃ - CategoryTheory.ShortComplex.hasLeftHomology_of_preserves 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasLeftHomology] [F.PreservesLeftHomologyOf S] : (S.map F).HasLeftHomology - CategoryTheory.ShortComplex.hasRightHomology_of_preserves 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : (S.map F).HasRightHomology - CategoryTheory.ShortComplex.LeftHomologyData.map 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (S.map F).LeftHomologyData - CategoryTheory.ShortComplex.RightHomologyData.map 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (S.map F).RightHomologyData - CategoryTheory.ShortComplex.hasHomology_of_preserves 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] : (S.map F).HasHomology - CategoryTheory.ShortComplex.HomologyData.map 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.HomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.left.IsPreservedBy F] [h.right.IsPreservedBy F] : (S.map F).HomologyData - CategoryTheory.ShortComplex.mapCyclesIso 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasLeftHomology] [F.PreservesLeftHomologyOf S] : (S.map F).cycles ≅ F.obj S.cycles - CategoryTheory.ShortComplex.mapLeftHomologyIso 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasLeftHomology] [F.PreservesLeftHomologyOf S] : (S.map F).leftHomology ≅ F.obj S.leftHomology - CategoryTheory.ShortComplex.mapOpcyclesIso 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : (S.map F).opcycles ≅ F.obj S.opcycles - CategoryTheory.ShortComplex.mapRightHomologyIso 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : (S.map F).rightHomology ≅ F.obj S.rightHomology - CategoryTheory.ShortComplex.LeftHomologyData.map_H 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).H = F.obj h.H - CategoryTheory.ShortComplex.LeftHomologyData.map_K 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).K = F.obj h.K - CategoryTheory.ShortComplex.RightHomologyData.map_H 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).H = F.obj h.H - CategoryTheory.ShortComplex.RightHomologyData.map_Q 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).Q = F.obj h.Q - CategoryTheory.ShortComplex.mapHomologyIso 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [(S.map F).HasHomology] [F.PreservesLeftHomologyOf S] : (S.map F).homology ≅ F.obj S.homology - CategoryTheory.ShortComplex.mapHomologyIso' 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [(S.map F).HasHomology] [F.PreservesRightHomologyOf S] : (S.map F).homology ≅ F.obj S.homology - CategoryTheory.ShortComplex.HomologyData.map_left 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.HomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.left.IsPreservedBy F] [h.right.IsPreservedBy F] : (h.map F).left = h.left.map F - CategoryTheory.ShortComplex.HomologyData.map_right 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.HomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.left.IsPreservedBy F] [h.right.IsPreservedBy F] : (h.map F).right = h.right.map F - CategoryTheory.ShortComplex.LeftHomologyData.map_f' 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).f' = F.map h.f' - CategoryTheory.ShortComplex.RightHomologyData.map_g' 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).g' = F.map h.g' - CategoryTheory.ShortComplex.mapHomologyIso'_eq_mapHomologyIso 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] : S.mapHomologyIso' F = S.mapHomologyIso F - CategoryTheory.ShortComplex.LeftHomologyData.map_i 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).i = F.map h.i - CategoryTheory.ShortComplex.RightHomologyData.map_p 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).p = F.map h.p - CategoryTheory.ShortComplex.LeftHomologyData.map_π 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).π = F.map h.π - CategoryTheory.ShortComplex.RightHomologyData.map_ι 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] : (h.map F).ι = F.map h.ι - CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] (h : S.LeftHomologyData) (τ : F ⟶ G) : CategoryTheory.ShortComplex.LeftHomologyMapData (S.mapNatTrans τ) (h.map F) (h.map G) - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (τ : F ⟶ G) : CategoryTheory.ShortComplex.RightHomologyMapData (S.mapNatTrans τ) (h.map F) (h.map G) - CategoryTheory.ShortComplex.HomologyData.map_iso 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.HomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.left.IsPreservedBy F] [h.right.IsPreservedBy F] : (h.map F).iso = F.mapIso h.iso - CategoryTheory.ShortComplex.HomologyMapData.natTransApp 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.HomologyData) (τ : F ⟶ G) : CategoryTheory.ShortComplex.HomologyMapData (S.mapNatTrans τ) (h.map F) (h.map G) - CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp_φH 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] (h : S.LeftHomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp h τ).φH = τ.app h.H - CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp_φK 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] (h : S.LeftHomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp h τ).φK = τ.app h.K - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φH 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h τ).φH = τ.app h.H - CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp_φQ 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.RightHomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h τ).φQ = τ.app h.Q - CategoryTheory.ShortComplex.LeftHomologyData.mapHomologyIso_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hl : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [(S.map F).HasHomology] [F.PreservesLeftHomologyOf S] : S.mapHomologyIso F = (hl.map F).homologyIso ≪≫ F.mapIso hl.homologyIso.symm - CategoryTheory.ShortComplex.RightHomologyData.mapHomologyIso'_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasHomology] [(S.map F).HasHomology] [F.PreservesRightHomologyOf S] : S.mapHomologyIso' F = (hr.map F).homologyIso ≪≫ F.mapIso hr.homologyIso.symm - CategoryTheory.ShortComplex.LeftHomologyData.mapCyclesIso_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hl : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasLeftHomology] [F.PreservesLeftHomologyOf S] : S.mapCyclesIso F = (hl.map F).cyclesIso ≪≫ F.mapIso hl.cyclesIso.symm - CategoryTheory.ShortComplex.LeftHomologyData.mapLeftHomologyIso_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hl : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasLeftHomology] [F.PreservesLeftHomologyOf S] : S.mapLeftHomologyIso F = (hl.map F).leftHomologyIso ≪≫ F.mapIso hl.leftHomologyIso.symm - CategoryTheory.ShortComplex.RightHomologyData.mapOpcyclesIso_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : S.mapOpcyclesIso F = (hr.map F).opcyclesIso ≪≫ F.mapIso hr.opcyclesIso.symm - CategoryTheory.ShortComplex.RightHomologyData.mapRightHomologyIso_eq 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hr : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasRightHomology] [F.PreservesRightHomologyOf S] : S.mapRightHomologyIso F = (hr.map F).rightHomologyIso ≪≫ F.mapIso hr.rightHomologyIso.symm - CategoryTheory.ShortComplex.mapCyclesIso_hom_iCycles 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasLeftHomology] [F.PreservesLeftHomologyOf S] : CategoryTheory.CategoryStruct.comp (S.mapCyclesIso F).hom (F.map S.iCycles) = (S.map F).iCycles - CategoryTheory.ShortComplex.HomologyMapData.natTransApp_left 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.HomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.HomologyMapData.natTransApp h τ).left = CategoryTheory.ShortComplex.LeftHomologyMapData.natTransApp h.left τ - CategoryTheory.ShortComplex.HomologyMapData.natTransApp_right 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] (h : S.HomologyData) (τ : F ⟶ G) : (CategoryTheory.ShortComplex.HomologyMapData.natTransApp h τ).right = CategoryTheory.ShortComplex.RightHomologyMapData.natTransApp h.right τ - CategoryTheory.ShortComplex.mapCyclesIso_hom_iCycles_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S.HasLeftHomology] [F.PreservesLeftHomologyOf S] {Z : D} (h : F.obj S.X₂ ⟶ Z) : CategoryTheory.CategoryStruct.comp (S.mapCyclesIso F).hom (CategoryTheory.CategoryStruct.comp (F.map S.iCycles) h) = CategoryTheory.CategoryStruct.comp (S.map F).iCycles h - CategoryTheory.ShortComplex.mapHomologyIso'_hom_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) (S₂.mapHomologyIso' F).hom = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso' F).hom (F.map (CategoryTheory.ShortComplex.homologyMap φ)) - CategoryTheory.ShortComplex.mapHomologyIso'_inv_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.homologyMap φ)) (S₂.mapHomologyIso' F).inv = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso' F).inv (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) - CategoryTheory.ShortComplex.mapHomologyIso_hom_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) (S₂.mapHomologyIso F).hom = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso F).hom (F.map (CategoryTheory.ShortComplex.homologyMap φ)) - CategoryTheory.ShortComplex.mapHomologyIso_inv_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.homologyMap φ)) (S₂.mapHomologyIso F).inv = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso F).inv (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) - CategoryTheory.NatTrans.app_homology 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {F G : CategoryTheory.Functor C D} (τ : F ⟶ G) (S : CategoryTheory.ShortComplex C) [S.HasHomology] [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] : τ.app S.homology = CategoryTheory.CategoryStruct.comp (S.mapHomologyIso F).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.homologyMap (S.mapNatTrans τ)) (S.mapHomologyIso G).hom) - CategoryTheory.ShortComplex.homologyMap_mapNatTrans 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) {F G : CategoryTheory.Functor C D} [F.PreservesZeroMorphisms] [G.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [G.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [G.PreservesRightHomologyOf S] [S.HasHomology] (τ : F ⟶ G) : CategoryTheory.ShortComplex.homologyMap (S.mapNatTrans τ) = CategoryTheory.CategoryStruct.comp (S.mapHomologyIso F).hom (CategoryTheory.CategoryStruct.comp (τ.app S.homology) (S.mapHomologyIso G).inv) - CategoryTheory.ShortComplex.mapHomologyIso'_hom_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] {Z : D} (h : F.obj S₂.homology ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapHomologyIso' F).hom h) = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso' F).hom (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.homologyMap φ)) h) - CategoryTheory.ShortComplex.mapHomologyIso'_inv_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] {Z : D} (h : (S₂.map F).homology ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.homologyMap φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapHomologyIso' F).inv h) = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso' F).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) h) - CategoryTheory.ShortComplex.mapHomologyIso_hom_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] {Z : D} (h : F.obj S₂.homology ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapHomologyIso F).hom h) = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso F).hom (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.homologyMap φ)) h) - CategoryTheory.ShortComplex.mapHomologyIso_inv_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasHomology] [S₂.HasHomology] [(S₁.map F).HasHomology] [(S₂.map F).HasHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] {Z : D} (h : (S₂.map F).homology ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.homologyMap φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapHomologyIso F).inv h) = CategoryTheory.CategoryStruct.comp (S₁.mapHomologyIso F).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.homologyMap (F.mapShortComplex.map φ)) h) - CategoryTheory.ShortComplex.mapCyclesIso_inv_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.cyclesMap φ)) (S₂.mapCyclesIso F).inv = CategoryTheory.CategoryStruct.comp (S₁.mapCyclesIso F).inv (CategoryTheory.ShortComplex.cyclesMap (F.mapShortComplex.map φ)) - CategoryTheory.ShortComplex.mapLeftHomologyIso_inv_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.leftHomologyMap φ)) (S₂.mapLeftHomologyIso F).inv = CategoryTheory.CategoryStruct.comp (S₁.mapLeftHomologyIso F).inv (CategoryTheory.ShortComplex.leftHomologyMap (F.mapShortComplex.map φ)) - CategoryTheory.ShortComplex.mapOpcyclesIso_inv_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.opcyclesMap φ)) (S₂.mapOpcyclesIso F).inv = CategoryTheory.CategoryStruct.comp (S₁.mapOpcyclesIso F).inv (CategoryTheory.ShortComplex.opcyclesMap (F.mapShortComplex.map φ)) - CategoryTheory.ShortComplex.mapRightHomologyIso_inv_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.rightHomologyMap φ)) (S₂.mapRightHomologyIso F).inv = CategoryTheory.CategoryStruct.comp (S₁.mapRightHomologyIso F).inv (CategoryTheory.ShortComplex.rightHomologyMap (F.mapShortComplex.map φ)) - CategoryTheory.ShortComplex.mapCyclesIso_inv_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] {Z : D} (h : (S₂.map F).cycles ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.cyclesMap φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapCyclesIso F).inv h) = CategoryTheory.CategoryStruct.comp (S₁.mapCyclesIso F).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.cyclesMap (F.mapShortComplex.map φ)) h) - CategoryTheory.ShortComplex.mapLeftHomologyIso_inv_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] {Z : D} (h : (S₂.map F).leftHomology ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.leftHomologyMap φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapLeftHomologyIso F).inv h) = CategoryTheory.CategoryStruct.comp (S₁.mapLeftHomologyIso F).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.leftHomologyMap (F.mapShortComplex.map φ)) h) - CategoryTheory.ShortComplex.mapOpcyclesIso_inv_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] {Z : D} (h : (S₂.map F).opcycles ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.opcyclesMap φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapOpcyclesIso F).inv h) = CategoryTheory.CategoryStruct.comp (S₁.mapOpcyclesIso F).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.opcyclesMap (F.mapShortComplex.map φ)) h) - CategoryTheory.ShortComplex.mapRightHomologyIso_inv_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] {Z : D} (h : (S₂.map F).rightHomology ⟶ Z) : CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.rightHomologyMap φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapRightHomologyIso F).inv h) = CategoryTheory.CategoryStruct.comp (S₁.mapRightHomologyIso F).inv (CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.rightHomologyMap (F.mapShortComplex.map φ)) h) - CategoryTheory.ShortComplex.mapCyclesIso_hom_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.cyclesMap (F.mapShortComplex.map φ)) (S₂.mapCyclesIso F).hom = CategoryTheory.CategoryStruct.comp (S₁.mapCyclesIso F).hom (F.map (CategoryTheory.ShortComplex.cyclesMap φ)) - CategoryTheory.ShortComplex.mapLeftHomologyIso_hom_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.leftHomologyMap (F.mapShortComplex.map φ)) (S₂.mapLeftHomologyIso F).hom = CategoryTheory.CategoryStruct.comp (S₁.mapLeftHomologyIso F).hom (F.map (CategoryTheory.ShortComplex.leftHomologyMap φ)) - CategoryTheory.ShortComplex.mapOpcyclesIso_hom_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.opcyclesMap (F.mapShortComplex.map φ)) (S₂.mapOpcyclesIso F).hom = CategoryTheory.CategoryStruct.comp (S₁.mapOpcyclesIso F).hom (F.map (CategoryTheory.ShortComplex.opcyclesMap φ)) - CategoryTheory.ShortComplex.mapRightHomologyIso_hom_naturality 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.rightHomologyMap (F.mapShortComplex.map φ)) (S₂.mapRightHomologyIso F).hom = CategoryTheory.CategoryStruct.comp (S₁.mapRightHomologyIso F).hom (F.map (CategoryTheory.ShortComplex.rightHomologyMap φ)) - CategoryTheory.ShortComplex.mapCyclesIso_hom_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] {Z : D} (h : F.obj S₂.cycles ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.cyclesMap (F.mapShortComplex.map φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapCyclesIso F).hom h) = CategoryTheory.CategoryStruct.comp (S₁.mapCyclesIso F).hom (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.cyclesMap φ)) h) - CategoryTheory.ShortComplex.mapLeftHomologyIso_hom_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasLeftHomology] [S₂.HasLeftHomology] [F.PreservesLeftHomologyOf S₁] [F.PreservesLeftHomologyOf S₂] {Z : D} (h : F.obj S₂.leftHomology ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.leftHomologyMap (F.mapShortComplex.map φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapLeftHomologyIso F).hom h) = CategoryTheory.CategoryStruct.comp (S₁.mapLeftHomologyIso F).hom (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.leftHomologyMap φ)) h) - CategoryTheory.ShortComplex.mapOpcyclesIso_hom_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] {Z : D} (h : F.obj S₂.opcycles ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.opcyclesMap (F.mapShortComplex.map φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapOpcyclesIso F).hom h) = CategoryTheory.CategoryStruct.comp (S₁.mapOpcyclesIso F).hom (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.opcyclesMap φ)) h) - CategoryTheory.ShortComplex.mapRightHomologyIso_hom_naturality_assoc 📋 Mathlib.Algebra.Homology.ShortComplex.PreservesHomology
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S₁ S₂ : CategoryTheory.ShortComplex C} (φ : S₁ ⟶ S₂) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [S₁.HasRightHomology] [S₂.HasRightHomology] [F.PreservesRightHomologyOf S₁] [F.PreservesRightHomologyOf S₂] {Z : D} (h : F.obj S₂.rightHomology ⟶ Z) : CategoryTheory.CategoryStruct.comp (CategoryTheory.ShortComplex.rightHomologyMap (F.mapShortComplex.map φ)) (CategoryTheory.CategoryStruct.comp (S₂.mapRightHomologyIso F).hom h) = CategoryTheory.CategoryStruct.comp (S₁.mapRightHomologyIso F).hom (CategoryTheory.CategoryStruct.comp (F.map (CategoryTheory.ShortComplex.rightHomologyMap φ)) h) - CategoryTheory.ShortComplex.Splitting.map 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] {S : CategoryTheory.ShortComplex C} (s : S.Splitting) (F : CategoryTheory.Functor C D) [F.Additive] : (S.map F).Splitting - CategoryTheory.ShortComplex.Exact.map 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.Exact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] : (S.map F).Exact - CategoryTheory.ShortComplex.Exact.map_of_preservesLeftHomologyOf 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.Exact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [(S.map F).HasHomology] : (S.map F).Exact - CategoryTheory.ShortComplex.Exact.map_of_preservesRightHomologyOf 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.Exact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [F.PreservesRightHomologyOf S] [(S.map F).HasHomology] : (S.map F).Exact - CategoryTheory.ShortComplex.exact_map_iff_of_faithful 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] (S : CategoryTheory.ShortComplex C) [S.HasHomology] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [F.Faithful] : (S.map F).Exact ↔ S.Exact - CategoryTheory.ShortComplex.LeftHomologyData.exact_map_iff 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.LeftHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] [(S.map F).HasHomology] : (S.map F).Exact ↔ CategoryTheory.Limits.IsZero (F.obj h.H) - CategoryTheory.ShortComplex.RightHomologyData.exact_map_iff 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.RightHomologyData) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [h.IsPreservedBy F] [(S.map F).HasHomology] : (S.map F).Exact ↔ CategoryTheory.Limits.IsZero (F.obj h.H) - CategoryTheory.ShortComplex.Splitting.map_r 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] {S : CategoryTheory.ShortComplex C} (s : S.Splitting) (F : CategoryTheory.Functor C D) [F.Additive] : (s.map F).r = F.map s.r - CategoryTheory.ShortComplex.Splitting.map_s 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] {S : CategoryTheory.ShortComplex C} (s : S.Splitting) (F : CategoryTheory.Functor C D) [F.Additive] : (s.map F).s = F.map s.s - CategoryTheory.ShortComplex.Exact.map_of_epi_of_preservesCokernel 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] {S : CategoryTheory.ShortComplex C} [CategoryTheory.Balanced C] (hS : S.Exact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [(S.map F).HasHomology] : CategoryTheory.Epi S.g → CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.parallelPair S.f 0) F → (S.map F).Exact - CategoryTheory.ShortComplex.Exact.map_of_mono_of_preservesKernel 📋 Mathlib.Algebra.Homology.ShortComplex.Exact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Preadditive C] [CategoryTheory.Preadditive D] {S : CategoryTheory.ShortComplex C} [CategoryTheory.Balanced C] (hS : S.Exact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [(S.map F).HasHomology] : CategoryTheory.Mono S.f → CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.parallelPair S.g 0) F → (S.map F).Exact - CategoryTheory.ShortComplex.ShortExact.map_of_exact 📋 Mathlib.Algebra.Homology.ShortComplex.ShortExact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [CategoryTheory.Limits.PreservesFiniteLimits F] [CategoryTheory.Limits.PreservesFiniteColimits F] : (S.map F).ShortExact - CategoryTheory.ShortComplex.ShortExact.map 📋 Mathlib.Algebra.Homology.ShortComplex.ShortExact
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroMorphisms D] {S : CategoryTheory.ShortComplex C} (h : S.ShortExact) (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [F.PreservesLeftHomologyOf S] [F.PreservesRightHomologyOf S] [CategoryTheory.Mono (F.map S.f)] [CategoryTheory.Epi (F.map S.g)] : (S.map F).ShortExact - CategoryTheory.Functor.preservesEpimorphisms_of_map_exact 📋 Mathlib.CategoryTheory.Abelian.Exact
{A : Type u₁} {B : Type u₂} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Abelian A] [CategoryTheory.Abelian B] (L : CategoryTheory.Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : CategoryTheory.ShortComplex A), S.Exact → (S.map L).Exact) : L.PreservesEpimorphisms - CategoryTheory.Functor.preservesMonomorphisms_of_map_exact 📋 Mathlib.CategoryTheory.Abelian.Exact
{A : Type u₁} {B : Type u₂} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Abelian A] [CategoryTheory.Abelian B] (L : CategoryTheory.Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : CategoryTheory.ShortComplex A), S.Exact → (S.map L).Exact) : L.PreservesMonomorphisms - CategoryTheory.Functor.reflects_exact_of_faithful 📋 Mathlib.CategoryTheory.Abelian.Exact
{C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] [CategoryTheory.Abelian C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] [CategoryTheory.Abelian D] (F : CategoryTheory.Functor C D) [F.PreservesZeroMorphisms] [F.Faithful] (S : CategoryTheory.ShortComplex C) (hS : (S.map F).Exact) : S.Exact - CategoryTheory.Functor.preservesHomology_of_map_exact 📋 Mathlib.CategoryTheory.Abelian.Exact
{A : Type u₁} {B : Type u₂} [CategoryTheory.Category.{v₁, u₁} A] [CategoryTheory.Category.{v₂, u₂} B] [CategoryTheory.Abelian A] [CategoryTheory.Abelian B] (L : CategoryTheory.Functor A B) [L.PreservesZeroMorphisms] (hL : ∀ (S : CategoryTheory.ShortComplex A), S.Exact → (S.map L).Exact) : L.PreservesHomology - CategoryTheory.Functor.preservesEpimorphisms_of_preserves_shortExact_right 📋 Mathlib.Algebra.Homology.ShortComplex.ExactFunctor
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Abelian C] [CategoryTheory.Abelian D] (F : CategoryTheory.Functor C D) [F.Additive] (h : ∀ (S : CategoryTheory.ShortComplex C), S.ShortExact → (S.map F).Exact ∧ CategoryTheory.Epi (F.map S.g)) : F.PreservesEpimorphisms - CategoryTheory.Functor.preservesMonomorphisms_of_preserves_shortExact_left 📋 Mathlib.Algebra.Homology.ShortComplex.ExactFunctor
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Abelian C] [CategoryTheory.Abelian D] (F : CategoryTheory.Functor C D) [F.Additive] (h : ∀ (S : CategoryTheory.ShortComplex C), S.ShortExact → (S.map F).Exact ∧ CategoryTheory.Mono (F.map S.f)) : F.PreservesMonomorphisms - CategoryTheory.Functor.exact_tfae 📋 Mathlib.Algebra.Homology.ShortComplex.ExactFunctor
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Abelian C] [CategoryTheory.Abelian D] (F : CategoryTheory.Functor C D) [F.Additive] : [∀ (S : CategoryTheory.ShortComplex C), S.ShortExact → (S.map F).ShortExact, ∀ (S : CategoryTheory.ShortComplex C), S.Exact → (S.map F).Exact, F.PreservesHomology, CategoryTheory.Limits.PreservesFiniteLimits F ∧ CategoryTheory.Limits.PreservesFiniteColimits F].TFAE - CategoryTheory.Functor.preservesFiniteColimits_tfae 📋 Mathlib.Algebra.Homology.ShortComplex.ExactFunctor
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Abelian C] [CategoryTheory.Abelian D] (F : CategoryTheory.Functor C D) [F.Additive] : [∀ (S : CategoryTheory.ShortComplex C), S.ShortExact → (S.map F).Exact ∧ CategoryTheory.Epi (F.map S.g), ∀ (S : CategoryTheory.ShortComplex C), S.Exact ∧ CategoryTheory.Epi S.g → (S.map F).Exact ∧ CategoryTheory.Epi (F.map S.g), ∀ ⦃X Y : C⦄ (f : X ⟶ Y), CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.parallelPair f 0) F, CategoryTheory.Limits.PreservesFiniteColimits F].TFAE - CategoryTheory.Functor.preservesFiniteLimits_tfae 📋 Mathlib.Algebra.Homology.ShortComplex.ExactFunctor
{C : Type u_1} {D : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Category.{u_4, u_2} D] [CategoryTheory.Abelian C] [CategoryTheory.Abelian D] (F : CategoryTheory.Functor C D) [F.Additive] : [∀ (S : CategoryTheory.ShortComplex C), S.ShortExact → (S.map F).Exact ∧ CategoryTheory.Mono (F.map S.f), ∀ (S : CategoryTheory.ShortComplex C), S.Exact ∧ CategoryTheory.Mono S.f → (S.map F).Exact ∧ CategoryTheory.Mono (F.map S.f), ∀ ⦃X Y : C⦄ (f : X ⟶ Y), CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.parallelPair f 0) F, CategoryTheory.Limits.PreservesFiniteLimits F].TFAE - CategoryTheory.ShortComplex.exact_iff_exact_map_forget₂ 📋 Mathlib.Algebra.Homology.ShortComplex.ConcreteCategory
{C : Type u} [CategoryTheory.Category.{v, u} C] {FC : C → C → Type u_1} {CC : C → Type w} [(X Y : C) → FunLike (FC X Y) (CC X) (CC Y)] [CategoryTheory.ConcreteCategory C FC] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Preadditive C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] (S : CategoryTheory.ShortComplex C) [S.HasHomology] : S.Exact ↔ (S.map (CategoryTheory.forget₂ C Ab)).Exact - HomologicalComplex.HomologySequence.snakeInput_v₀₁ 📋 Mathlib.Algebra.Homology.HomologySequence
{C : Type u_1} {ι : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Abelian C] {c : ComplexShape ι} {S : CategoryTheory.ShortComplex (HomologicalComplex C c)} (hS : S.ShortExact) (i j : ι) (hij : c.Rel i j) : (HomologicalComplex.HomologySequence.snakeInput hS i j hij).v₀₁ = S.mapNatTrans (HomologicalComplex.natTransHomologyι C c i) - HomologicalComplex.HomologySequence.snakeInput_v₂₃ 📋 Mathlib.Algebra.Homology.HomologySequence
{C : Type u_1} {ι : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Abelian C] {c : ComplexShape ι} {S : CategoryTheory.ShortComplex (HomologicalComplex C c)} (hS : S.ShortExact) (i j : ι) (hij : c.Rel i j) : (HomologicalComplex.HomologySequence.snakeInput hS i j hij).v₂₃ = S.mapNatTrans (HomologicalComplex.natTransHomologyπ C c j) - HomologicalComplex.HomologySequence.snakeInput_v₁₂ 📋 Mathlib.Algebra.Homology.HomologySequence
{C : Type u_1} {ι : Type u_2} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Abelian C] {c : ComplexShape ι} {S : CategoryTheory.ShortComplex (HomologicalComplex C c)} (hS : S.ShortExact) (i j : ι) (hij : c.Rel i j) : (HomologicalComplex.HomologySequence.snakeInput hS i j hij).v₁₂ = S.mapNatTrans (HomologicalComplex.natTransOpCyclesToCycles C c i j) - HomologicalComplex.exact_of_degreewise_exact 📋 Mathlib.Algebra.Homology.HomologicalComplexAbelian
{C : Type u_1} {ι : Type u_2} {c : ComplexShape ι} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Abelian C] (S : CategoryTheory.ShortComplex (HomologicalComplex C c)) (hS : ∀ (i : ι), (S.map (HomologicalComplex.eval C c i)).Exact) : S.Exact - HomologicalComplex.shortExact_of_degreewise_shortExact 📋 Mathlib.Algebra.Homology.HomologicalComplexAbelian
{C : Type u_1} {ι : Type u_2} {c : ComplexShape ι} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Abelian C] (S : CategoryTheory.ShortComplex (HomologicalComplex C c)) (hS : ∀ (i : ι), (S.map (HomologicalComplex.eval C c i)).ShortExact) : S.ShortExact - HomologicalComplex.exact_iff_degreewise_exact 📋 Mathlib.Algebra.Homology.HomologicalComplexAbelian
{C : Type u_1} {ι : Type u_2} {c : ComplexShape ι} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Abelian C] (S : CategoryTheory.ShortComplex (HomologicalComplex C c)) : S.Exact ↔ ∀ (i : ι), (S.map (HomologicalComplex.eval C c i)).Exact - HomologicalComplex.shortExact_iff_degreewise_shortExact 📋 Mathlib.Algebra.Homology.HomologicalComplexAbelian
{C : Type u_1} {ι : Type u_2} {c : ComplexShape ι} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Abelian C] (S : CategoryTheory.ShortComplex (HomologicalComplex C c)) : S.ShortExact ↔ ∀ (i : ι), (S.map (HomologicalComplex.eval C c i)).ShortExact - CochainComplex.triangleOfDegreewiseSplit 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : CategoryTheory.Pretriangulated.Triangle (CochainComplex C ℤ) - CochainComplex.mappingCone.triangleRotateShortComplexSplitting 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K L : CochainComplex C ℤ} (φ : K ⟶ L) (n : ℤ) : ((CochainComplex.mappingCone.triangleRotateShortComplex φ).map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting - CochainComplex.trianglehOfDegreewiseSplit 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : CategoryTheory.Pretriangulated.Triangle (HomotopyCategory C (ComplexShape.up ℤ)) - CochainComplex.triangleOfDegreewiseSplit_obj₁ 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : (CochainComplex.triangleOfDegreewiseSplit S σ).obj₁ = S.X₁ - CochainComplex.triangleOfDegreewiseSplit_obj₂ 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : (CochainComplex.triangleOfDegreewiseSplit S σ).obj₂ = S.X₂ - CochainComplex.triangleOfDegreewiseSplit_obj₃ 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : (CochainComplex.triangleOfDegreewiseSplit S σ).obj₃ = S.X₃ - CochainComplex.cocycleOfDegreewiseSplit 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : CochainComplex.HomComplex.Cocycle S.X₃ S.X₁ 1 - CochainComplex.mappingCone.triangleRotateShortComplexSplitting_r 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K L : CochainComplex C ℤ} (φ : K ⟶ L) (n : ℤ) : (CochainComplex.mappingCone.triangleRotateShortComplexSplitting φ n).r = (CochainComplex.mappingCone.snd φ).v n n ⋯ - CochainComplex.triangleOfDegreewiseSplit_mor₁ 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : (CochainComplex.triangleOfDegreewiseSplit S σ).mor₁ = S.f - CochainComplex.triangleOfDegreewiseSplit_mor₂ 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : (CochainComplex.triangleOfDegreewiseSplit S σ).mor₂ = S.g - CochainComplex.homOfDegreewiseSplit 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : S.X₃ ⟶ (CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).obj S.X₁ - CochainComplex.triangleOfDegreewiseSplit_mor₃ 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : (CochainComplex.triangleOfDegreewiseSplit S σ).mor₃ = CochainComplex.homOfDegreewiseSplit S σ - CochainComplex.mappingCone.triangleRotateShortComplexSplitting_s 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K L : CochainComplex C ℤ} (φ : K ⟶ L) (n : ℤ) : (CochainComplex.mappingCone.triangleRotateShortComplexSplitting φ n).s = -(CochainComplex.mappingCone.inl φ).v (n + 1) n ⋯ - HomotopyCategory.distinguished_iff_iso_trianglehOfDegreewiseSplit 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Limits.HasBinaryBiproducts C] (T : CategoryTheory.Pretriangulated.Triangle (HomotopyCategory C (ComplexShape.up ℤ))) : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles ↔ ∃ S σ, Nonempty (T ≅ CochainComplex.trianglehOfDegreewiseSplit S σ) - CochainComplex.triangleOfDegreewiseSplitRotateRotateIso 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] : (CochainComplex.triangleOfDegreewiseSplit S σ).rotate.rotate ≅ CochainComplex.mappingCone.triangle (CochainComplex.homOfDegreewiseSplit S σ) - CochainComplex.trianglehOfDegreewiseSplitRotateRotateIso 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] : (CochainComplex.trianglehOfDegreewiseSplit S σ).rotate.rotate ≅ CochainComplex.mappingCone.triangleh (CochainComplex.homOfDegreewiseSplit S σ) - CochainComplex.cocycleOfDegreewiseSplit.eq_1 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : CochainComplex.cocycleOfDegreewiseSplit S σ = CochainComplex.HomComplex.Cocycle.mk (CochainComplex.HomComplex.Cochain.mk fun p q x => CategoryTheory.CategoryStruct.comp (σ p).s (CategoryTheory.CategoryStruct.comp (S.X₂.d p q) (σ q).r)) 2 CochainComplex.cocycleOfDegreewiseSplit._proof_7 ⋯ - CochainComplex.mappingConeHomOfDegreewiseSplitXIso 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] (p q : ℤ) (hpq : p + 1 = q) : (CochainComplex.mappingCone (CochainComplex.homOfDegreewiseSplit S σ)).X p ≅ S.X₂.X q - CochainComplex.mappingConeHomOfDegreewiseSplitIso 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] : CochainComplex.mappingCone (CochainComplex.homOfDegreewiseSplit S σ) ≅ (CategoryTheory.shiftFunctor (HomologicalComplex C (ComplexShape.up ℤ)) 1).obj S.X₂ - CochainComplex.homOfDegreewiseSplit_f 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) (n : ℤ) : (CochainComplex.homOfDegreewiseSplit S σ).f n = (↑(CochainComplex.cocycleOfDegreewiseSplit S σ)).v n (n + 1) ⋯ - CochainComplex.mappingConeHomOfDegreewiseSplitIso_hom_f 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] (i : ℤ) : (CochainComplex.mappingConeHomOfDegreewiseSplitIso S σ).hom.f i = (CochainComplex.mappingConeHomOfDegreewiseSplitXIso S σ i (i + 1) ⋯).hom - CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_f 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] (i : ℤ) : (CochainComplex.mappingConeHomOfDegreewiseSplitIso S σ).inv.f i = (CochainComplex.mappingConeHomOfDegreewiseSplitXIso S σ i (i + 1) ⋯).inv - CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃ 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] : CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeHomOfDegreewiseSplitIso S σ).inv (CochainComplex.mappingCone.triangle (CochainComplex.homOfDegreewiseSplit S σ)).mor₃ = -(CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map S.g - CochainComplex.mappingConeHomOfDegreewiseSplitIso_inv_comp_triangle_mor₃_assoc 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] {Z : HomologicalComplex C (ComplexShape.up ℤ)} (h : (CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).obj (CochainComplex.mappingCone.triangle (CochainComplex.homOfDegreewiseSplit S σ)).obj₁ ⟶ Z) : CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeHomOfDegreewiseSplitIso S σ).inv (CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.triangle (CochainComplex.homOfDegreewiseSplit S σ)).mor₃ h) = CategoryTheory.CategoryStruct.comp (-(CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map S.g) h - CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] : CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map S.f) (CochainComplex.mappingConeHomOfDegreewiseSplitIso S σ).inv = -CochainComplex.mappingCone.inr (CochainComplex.homOfDegreewiseSplit S σ) - CochainComplex.shift_f_comp_mappingConeHomOfDegreewiseSplitIso_inv_assoc 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] {Z : CochainComplex C ℤ} (h : CochainComplex.mappingCone (CochainComplex.homOfDegreewiseSplit S σ) ⟶ Z) : CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map S.f) (CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeHomOfDegreewiseSplitIso S σ).inv h) = CategoryTheory.CategoryStruct.comp (-CochainComplex.mappingCone.inr (CochainComplex.homOfDegreewiseSplit S σ)) h - CochainComplex.homOfDegreewiseSplit.eq_1 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) : CochainComplex.homOfDegreewiseSplit S σ = (CochainComplex.HomComplex.Cocycle.equivHom S.X₃ ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).obj S.X₁)).symm ((CochainComplex.cocycleOfDegreewiseSplit S σ).rightShift 1 0 CochainComplex.homOfDegreewiseSplit._proof_9) - CochainComplex.mappingConeHomOfDegreewiseSplitXIso.eq_1 📋 Mathlib.Algebra.Homology.HomotopyCategory.DegreewiseSplit
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] (S : CategoryTheory.ShortComplex (CochainComplex C ℤ)) (σ : (n : ℤ) → (S.map (HomologicalComplex.eval C (ComplexShape.up ℤ) n)).Splitting) [CategoryTheory.Limits.HasBinaryBiproducts C] (p q : ℤ) (hpq : p + 1 = q) : CochainComplex.mappingConeHomOfDegreewiseSplitXIso S σ p q hpq = { hom := CategoryTheory.CategoryStruct.comp ((↑(CochainComplex.mappingCone.fst (CochainComplex.homOfDegreewiseSplit S σ))).v p q hpq) (σ q).s - CategoryTheory.CategoryStruct.comp ((CochainComplex.mappingCone.snd (CochainComplex.homOfDegreewiseSplit S σ)).v p p ⋯) ((CochainComplex.HomComplex.Cochain.ofHom S.f).v (p + 1) q ⋯), inv := CategoryTheory.CategoryStruct.comp (S.g.f q) ((CochainComplex.mappingCone.inl (CochainComplex.homOfDegreewiseSplit S σ)).v q p ⋯) - CategoryTheory.CategoryStruct.comp (σ q).r (CategoryTheory.CategoryStruct.comp (HomologicalComplex.XIsoOfEq S.X₁ ⋯).hom ((CochainComplex.mappingCone.inr (CochainComplex.homOfDegreewiseSplit S σ)).f p)), hom_inv_id := ⋯, inv_hom_id := ⋯ } - CategoryTheory.Functor.map_distinguished_exact 📋 Mathlib.CategoryTheory.Triangulated.HomologicalFunctor
{C : Type u_1} {A : Type u_3} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.HasShift C ℤ] [CategoryTheory.Category.{u_5, u_3} A] (F : CategoryTheory.Functor C A) [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] [∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Abelian A] [F.IsHomological] (T : CategoryTheory.Pretriangulated.Triangle C) (hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles) : ((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T hT).map F).Exact - CategoryTheory.Functor.IsHomological.exact 📋 Mathlib.CategoryTheory.Triangulated.HomologicalFunctor
{C : Type u_1} {A : Type u_3} {inst✝ : CategoryTheory.Category.{u_4, u_1} C} {inst✝¹ : CategoryTheory.HasShift C ℤ} {inst✝² : CategoryTheory.Category.{u_5, u_3} A} {F : CategoryTheory.Functor C A} {inst✝³ : CategoryTheory.Limits.HasZeroObject C} {inst✝⁴ : CategoryTheory.Preadditive C} {inst✝⁵ : ∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive} {inst✝⁶ : CategoryTheory.Pretriangulated C} {inst✝⁷ : CategoryTheory.Abelian A} [self : F.IsHomological] (T : CategoryTheory.Pretriangulated.Triangle C) (hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles) : ((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T hT).map F).Exact - CategoryTheory.Functor.IsHomological.mk 📋 Mathlib.CategoryTheory.Triangulated.HomologicalFunctor
{C : Type u_1} {A : Type u_3} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.HasShift C ℤ] [CategoryTheory.Category.{u_5, u_3} A] {F : CategoryTheory.Functor C A} [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] [∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Abelian A] [toPreservesZeroMorphisms : F.PreservesZeroMorphisms] (exact : ∀ (T : CategoryTheory.Pretriangulated.Triangle C) (hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles), ((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T hT).map F).Exact) : F.IsHomological - CategoryTheory.Functor.IsHomological.mk' 📋 Mathlib.CategoryTheory.Triangulated.HomologicalFunctor
{C : Type u_1} {A : Type u_3} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.HasShift C ℤ] [CategoryTheory.Category.{u_5, u_3} A] (F : CategoryTheory.Functor C A) [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] [∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] [CategoryTheory.Abelian A] [F.PreservesZeroMorphisms] (hF : ∀ (T : CategoryTheory.Pretriangulated.Triangle C) (hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles), ∃ T' e, ((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T' ⋯).map F).Exact) : F.IsHomological - CategoryTheory.ShortComplex.ShortExact.singleTriangleIso 📋 Mathlib.Algebra.Homology.DerivedCategory.SingleTriangle
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [HasDerivedCategory C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) : hS.singleTriangle ≅ DerivedCategory.triangleOfSES ⋯ - CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₁ 📋 Mathlib.Algebra.Homology.DerivedCategory.SingleTriangle
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [HasDerivedCategory C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) : hS.singleTriangleIso.hom.hom₁ = ((DerivedCategory.singleFunctorsPostcompQIso C).hom.hom 0).app S.X₁ - CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₂ 📋 Mathlib.Algebra.Homology.DerivedCategory.SingleTriangle
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [HasDerivedCategory C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) : hS.singleTriangleIso.hom.hom₂ = ((DerivedCategory.singleFunctorsPostcompQIso C).hom.hom 0).app S.X₂ - CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_hom_hom₃ 📋 Mathlib.Algebra.Homology.DerivedCategory.SingleTriangle
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [HasDerivedCategory C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) : hS.singleTriangleIso.hom.hom₃ = ((DerivedCategory.singleFunctorsPostcompQIso C).hom.hom 0).app S.X₃ - CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₁ 📋 Mathlib.Algebra.Homology.DerivedCategory.SingleTriangle
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [HasDerivedCategory C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) : hS.singleTriangleIso.inv.hom₁ = ((DerivedCategory.singleFunctorsPostcompQIso C).inv.hom 0).app S.X₁ - CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₂ 📋 Mathlib.Algebra.Homology.DerivedCategory.SingleTriangle
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [HasDerivedCategory C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) : hS.singleTriangleIso.inv.hom₂ = ((DerivedCategory.singleFunctorsPostcompQIso C).inv.hom 0).app S.X₂ - CategoryTheory.ShortComplex.ShortExact.singleTriangleIso_inv_hom₃ 📋 Mathlib.Algebra.Homology.DerivedCategory.SingleTriangle
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [HasDerivedCategory C] {S : CategoryTheory.ShortComplex C} (hS : S.ShortExact) : hS.singleTriangleIso.inv.hom₃ = ((DerivedCategory.singleFunctorsPostcompQIso C).inv.hom 0).app S.X₃ - CategoryTheory.ShortComplex.ShortExact.instHasSmallLocalizedShiftedHomHomologicalComplexIntUpQuasiIsoX₃CochainComplexMapSingleFunctorOfNatX₁ 📋 Mathlib.Algebra.Homology.DerivedCategory.Ext.ExtClass
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Abelian C] [CategoryTheory.HasExt C] {S : CategoryTheory.ShortComplex C} : CategoryTheory.Localization.HasSmallLocalizedShiftedHom (HomologicalComplex.quasiIso C (ComplexShape.up ℤ)) ℤ (S.map (CochainComplex.singleFunctor C 0)).X₃ (S.map (CochainComplex.singleFunctor C 0)).X₁ - CategoryTheory.Functor.map_distinguished_op_exact 📋 Mathlib.CategoryTheory.Triangulated.Opposite.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.HasShift C ℤ] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.Preadditive C] [∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] {A : Type u_2} [CategoryTheory.Category.{u_3, u_2} A] [CategoryTheory.Abelian A] (F : CategoryTheory.Functor Cᵒᵖ A) [F.IsHomological] (T : CategoryTheory.Pretriangulated.Triangle C) (hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles) : ((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T hT).op.map F).Exact - CategoryTheory.Pretriangulated.preadditiveYoneda_map_distinguished 📋 Mathlib.CategoryTheory.Triangulated.Yoneda
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.HasShift C ℤ] [CategoryTheory.Limits.HasZeroObject C] [∀ (n : ℤ), (CategoryTheory.shiftFunctor C n).Additive] [CategoryTheory.Pretriangulated C] (T : CategoryTheory.Pretriangulated.Triangle C) (hT : T ∈ CategoryTheory.Pretriangulated.distinguishedTriangles) (B : C) : ((CategoryTheory.Pretriangulated.shortComplexOfDistTriangle T hT).op.map (CategoryTheory.preadditiveYoneda.obj B)).Exact - CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_obj 📋 Mathlib.Algebra.Homology.ShortComplex.FunctorEquivalence
(J : Type u_1) (C : Type u_2) [CategoryTheory.Category.{u_3, u_1} J] [CategoryTheory.Category.{u_4, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex (CategoryTheory.Functor J C)) (j : J) : ((CategoryTheory.ShortComplex.FunctorEquivalence.functor J C).obj S).obj j = S.map ((CategoryTheory.evaluation J C).obj j) - CategoryTheory.ShortComplex.FunctorEquivalence.functor_obj_map 📋 Mathlib.Algebra.Homology.ShortComplex.FunctorEquivalence
(J : Type u_1) (C : Type u_2) [CategoryTheory.Category.{u_3, u_1} J] [CategoryTheory.Category.{u_4, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] (S : CategoryTheory.ShortComplex (CategoryTheory.Functor J C)) {X✝ Y✝ : J} (f : X✝ ⟶ Y✝) : ((CategoryTheory.ShortComplex.FunctorEquivalence.functor J C).obj S).map f = S.mapNatTrans ((CategoryTheory.evaluation J C).map f) - CategoryTheory.ShortComplex.FunctorEquivalence.functor_map_app 📋 Mathlib.Algebra.Homology.ShortComplex.FunctorEquivalence
(J : Type u_1) (C : Type u_2) [CategoryTheory.Category.{u_3, u_1} J] [CategoryTheory.Category.{u_4, u_2} C] [CategoryTheory.Limits.HasZeroMorphisms C] {X✝ Y✝ : CategoryTheory.ShortComplex (CategoryTheory.Functor J C)} (φ : X✝ ⟶ Y✝) (j : J) : ((CategoryTheory.ShortComplex.FunctorEquivalence.functor J C).map φ).app j = ((CategoryTheory.evaluation J C).obj j).mapShortComplex.map φ - Module.Flat.lTensor_shortComplex_exact 📋 Mathlib.RingTheory.Flat.CategoryTheory
{R : Type u} [CommRing R] (M : ModuleCat R) [Module.Flat R ↑M] (C : CategoryTheory.ShortComplex (ModuleCat R)) (hC : C.Exact) : (C.map (CategoryTheory.MonoidalCategory.tensorLeft M)).Exact - Module.Flat.rTensor_shortComplex_exact 📋 Mathlib.RingTheory.Flat.CategoryTheory
{R : Type u} [CommRing R] (M : ModuleCat R) [Module.Flat R ↑M] (C : CategoryTheory.ShortComplex (ModuleCat R)) (hC : C.Exact) : (C.map (CategoryTheory.MonoidalCategory.tensorRight M)).Exact - Module.Flat.iff_lTensor_preserves_shortComplex_exact 📋 Mathlib.RingTheory.Flat.CategoryTheory
{R : Type u} [CommRing R] (M : ModuleCat R) : Module.Flat R ↑M ↔ ∀ (C : CategoryTheory.ShortComplex (ModuleCat R)), C.Exact → (C.map (CategoryTheory.MonoidalCategory.tensorLeft M)).Exact - Module.Flat.iff_rTensor_preserves_shortComplex_exact 📋 Mathlib.RingTheory.Flat.CategoryTheory
{R : Type u} [CommRing R] (M : ModuleCat R) : Module.Flat R ↑M ↔ ∀ (C : CategoryTheory.ShortComplex (ModuleCat R)), C.Exact → (C.map (CategoryTheory.MonoidalCategory.tensorRight M)).Exact
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08