Loogle!
Result
Found 12 declarations mentioning CategoryTheory.Sigma.map.
- CategoryTheory.Sigma.map π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (g : J β I) : CategoryTheory.Functor ((j : J) Γ C (g j)) ((i : I) Γ C i) - CategoryTheory.Sigma.mapId π Mathlib.CategoryTheory.Sigma.Basic
(I : Type wβ) (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] : CategoryTheory.Sigma.map C id β CategoryTheory.Functor.id ((i : I) Γ C i) - CategoryTheory.Sigma.inclCompMap π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (g : J β I) (j : J) : (CategoryTheory.Sigma.incl j).comp (CategoryTheory.Sigma.map C g) β CategoryTheory.Sigma.incl (g j) - CategoryTheory.Sigma.map_obj π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (g : J β I) (j : J) (X : C (g j)) : (CategoryTheory.Sigma.map C g).obj β¨j, Xβ© = β¨g j, Xβ© - CategoryTheory.Sigma.mapComp π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} {K : Type wβ} (f : K β J) (g : J β I) : (CategoryTheory.Sigma.map (fun x => C (g x)) f).comp (CategoryTheory.Sigma.map C g) β CategoryTheory.Sigma.map C (g β f) - CategoryTheory.Sigma.map_map π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (g : J β I) {j : J} {X Y : C (g j)} (f : X βΆ Y) : (CategoryTheory.Sigma.map C g).map (CategoryTheory.Sigma.SigmaHom.mk f) = CategoryTheory.Sigma.SigmaHom.mk f - CategoryTheory.Sigma.mapId_hom_app π Mathlib.CategoryTheory.Sigma.Basic
(I : Type wβ) (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] (xβ : (i : I) Γ (fun i => C (id i)) i) : (CategoryTheory.Sigma.mapId I C).hom.app xβ = CategoryTheory.CategoryStruct.id β¨xβ.fst, xβ.sndβ© - CategoryTheory.Sigma.mapId_inv_app π Mathlib.CategoryTheory.Sigma.Basic
(I : Type wβ) (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] (xβ : (i : I) Γ (fun i => C (id i)) i) : (CategoryTheory.Sigma.mapId I C).inv.app xβ = CategoryTheory.CategoryStruct.id β¨xβ.fst, xβ.sndβ© - CategoryTheory.Sigma.inclCompMap_hom_app π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (g : J β I) (j : J) (X : C (g j)) : (CategoryTheory.Sigma.inclCompMap C g j).hom.app X = CategoryTheory.CategoryStruct.id β¨g j, Xβ© - CategoryTheory.Sigma.inclCompMap_inv_app π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} (g : J β I) (j : J) (X : C (g j)) : (CategoryTheory.Sigma.inclCompMap C g j).inv.app X = CategoryTheory.CategoryStruct.id β¨g j, Xβ© - CategoryTheory.Sigma.mapComp_hom_app π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} {K : Type wβ} (f : K β J) (g : J β I) (X : (i : K) Γ (fun i => C (g (f i))) i) : (CategoryTheory.Sigma.mapComp C f g).hom.app X = CategoryTheory.CategoryStruct.id β¨g (f X.fst), X.sndβ© - CategoryTheory.Sigma.mapComp_inv_app π Mathlib.CategoryTheory.Sigma.Basic
{I : Type wβ} (C : I β Type uβ) [(i : I) β CategoryTheory.Category.{vβ, uβ} (C i)] {J : Type wβ} {K : Type wβ} (f : K β J) (g : J β I) (X : (i : K) Γ (fun i => C (g (f i))) i) : (CategoryTheory.Sigma.mapComp C f g).inv.app X = CategoryTheory.CategoryStruct.id β¨g (f X.fst), X.sndβ©
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08