Loogle!
Result
Found 31 declarations mentioning CategoryTheory.Square.map.
- CategoryTheory.Square.map π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : CategoryTheory.Square D - CategoryTheory.Square.map_Xβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).Xβ = F.obj sq.Xβ - CategoryTheory.Square.map_Xβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).Xβ = F.obj sq.Xβ - CategoryTheory.Square.map_Xβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).Xβ = F.obj sq.Xβ - CategoryTheory.Square.map_Xβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).Xβ = F.obj sq.Xβ - CategoryTheory.Functor.mapSquare_obj π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (F : CategoryTheory.Functor C D) (sq : CategoryTheory.Square C) : F.mapSquare.obj sq = sq.map F - CategoryTheory.Square.map_fββ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).fββ = F.map sq.fββ - CategoryTheory.Square.map_fββ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).fββ = F.map sq.fββ - CategoryTheory.Square.map_fββ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).fββ = F.map sq.fββ - CategoryTheory.Square.map_fββ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) : (sq.map F).fββ = F.map sq.fββ - CategoryTheory.Functor.mapSquare_map_Οβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (F : CategoryTheory.Functor C D) {Xβ Yβ : CategoryTheory.Square C} (Ο : Xβ βΆ Yβ) : (F.mapSquare.map Ο).Οβ = F.map Ο.Οβ - CategoryTheory.Functor.mapSquare_map_Οβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (F : CategoryTheory.Functor C D) {Xβ Yβ : CategoryTheory.Square C} (Ο : Xβ βΆ Yβ) : (F.mapSquare.map Ο).Οβ = F.map Ο.Οβ - CategoryTheory.Functor.mapSquare_map_Οβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (F : CategoryTheory.Functor C D) {Xβ Yβ : CategoryTheory.Square C} (Ο : Xβ βΆ Yβ) : (F.mapSquare.map Ο).Οβ = F.map Ο.Οβ - CategoryTheory.Functor.mapSquare_map_Οβ π Mathlib.CategoryTheory.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (F : CategoryTheory.Functor C D) {Xβ Yβ : CategoryTheory.Square C} (Ο : Xβ βΆ Yβ) : (F.mapSquare.map Ο).Οβ = F.map Ο.Οβ - CategoryTheory.Square.IsPullback.map π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] {sq : CategoryTheory.Square C} (h : sq.IsPullback) (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan sq.fββ sq.fββ) F] : (sq.map F).IsPullback - CategoryTheory.Square.IsPullback.of_map π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] {sq : CategoryTheory.Square C} (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.ReflectsLimit (CategoryTheory.Limits.cospan sq.fββ sq.fββ) F] (h : (sq.map F).IsPullback) : sq.IsPullback - CategoryTheory.Square.IsPushout.map π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] {sq : CategoryTheory.Square C} (h : sq.IsPushout) (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span sq.fββ sq.fββ) F] : (sq.map F).IsPushout - CategoryTheory.Square.IsPushout.of_map π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] {sq : CategoryTheory.Square C} (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.ReflectsColimit (CategoryTheory.Limits.span sq.fββ sq.fββ) F] (h : (sq.map F).IsPushout) : sq.IsPushout - CategoryTheory.Square.isPullback_iff_map_coyoneda_isPullback π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] (sq : CategoryTheory.Square C) : sq.IsPullback β β (X : Cα΅α΅), (sq.map (CategoryTheory.coyoneda.obj X)).IsPullback - CategoryTheory.Square.isPushout_iff_op_map_yoneda_isPullback π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] (sq : CategoryTheory.Square C) : sq.IsPushout β β (X : C), (sq.op.map (CategoryTheory.yoneda.obj X)).IsPullback - CategoryTheory.Square.IsPullback.map_iff π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.PreservesLimit (CategoryTheory.Limits.cospan sq.fββ sq.fββ) F] [CategoryTheory.Limits.ReflectsLimit (CategoryTheory.Limits.cospan sq.fββ sq.fββ) F] : (sq.map F).IsPullback β sq.IsPullback - CategoryTheory.Square.IsPushout.map_iff π Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square
{C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u'} [CategoryTheory.Category.{v', u'} D] (sq : CategoryTheory.Square C) (F : CategoryTheory.Functor C D) [CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span sq.fββ sq.fββ) F] [CategoryTheory.Limits.ReflectsColimit (CategoryTheory.Limits.span sq.fββ sq.fββ) F] : (sq.map F).IsPushout β sq.IsPushout - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk' π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] (sq : CategoryTheory.Square C) [CategoryTheory.Mono sq.fββ] (H : β (F : CategoryTheory.Sheaf J (Type v)), (sq.op.map F.val).IsPullback) : J.MayerVietorisSquare - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk'_toSquare π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] (sq : CategoryTheory.Square C) [CategoryTheory.Mono sq.fββ] (H : β (F : CategoryTheory.Sheaf J (Type v)), (sq.op.map F.val).IsPullback) : (CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk' sq H).toSquare = sq - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushout π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] (self : J.MayerVietorisSquare) : (self.map (CategoryTheory.yoneda.comp (CategoryTheory.presheafToSheaf J (Type v)))).IsPushout - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] (toSquare : CategoryTheory.Square C) (mono_fββ : CategoryTheory.Mono toSquare.fββ := by infer_instance) (isPushout : (toSquare.map (CategoryTheory.yoneda.comp (CategoryTheory.presheafToSheaf J (Type v)))).IsPushout) : J.MayerVietorisSquare - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk.injEq π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] (toSquare : CategoryTheory.Square C) (mono_fββ : CategoryTheory.Mono toSquare.fββ := by infer_instance) (isPushout : (toSquare.map (CategoryTheory.yoneda.comp (CategoryTheory.presheafToSheaf J (Type v)))).IsPushout) (toSquareβ : CategoryTheory.Square C) (mono_fβββ : CategoryTheory.Mono toSquareβ.fββ := by infer_instance) (isPushoutβ : (toSquareβ.map (CategoryTheory.yoneda.comp (CategoryTheory.presheafToSheaf J (Type v)))).IsPushout) : ({ toSquare := toSquare, mono_fββ := mono_fββ, isPushout := isPushout } = { toSquare := toSquareβ, mono_fββ := mono_fβββ, isPushout := isPushoutβ }) = (toSquare = toSquareβ) - CategoryTheory.Sheaf.isPullback_square_op_map_yoneda_presheafToSheaf_yoneda_iff π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] (F : CategoryTheory.Sheaf J (Type v)) (sq : CategoryTheory.Square C) : (sq.op.map ((CategoryTheory.yoneda.comp (CategoryTheory.presheafToSheaf J (Type v))).op.comp (CategoryTheory.yoneda.obj F))).IsPullback β (sq.op.map F.val).IsPullback - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.mk.sizeOf_spec π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] [SizeOf C] (toSquare : CategoryTheory.Square C) (mono_fββ : CategoryTheory.Mono toSquare.fββ := by infer_instance) (isPushout : (toSquare.map (CategoryTheory.yoneda.comp (CategoryTheory.presheafToSheaf J (Type v)))).IsPushout) : sizeOf { toSquare := toSquare, mono_fββ := mono_fββ, isPushout := isPushout } = 1 + sizeOf toSquare + sizeOf mono_fββ + sizeOf isPushout - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.isPushoutAddCommGrpFreeSheaf π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] (S : J.MayerVietorisSquare) [CategoryTheory.HasWeakSheafify J AddCommGrp] : (S.map (CategoryTheory.yoneda.comp (((CategoryTheory.whiskeringRight Cα΅α΅ (Type v) AddCommGrp).obj AddCommGrp.free).comp (CategoryTheory.presheafToSheaf J AddCommGrp)))).IsPushout - CategoryTheory.GrothendieckTopology.MayerVietorisSquare.shortComplex_f π Mathlib.CategoryTheory.Sites.MayerVietorisSquare
{C : Type u} [CategoryTheory.Category.{v, u} C] {J : CategoryTheory.GrothendieckTopology C} [CategoryTheory.HasWeakSheafify J (Type v)] [CategoryTheory.HasSheafify J AddCommGrp] (S : J.MayerVietorisSquare) : S.shortComplex.f = CategoryTheory.Limits.biprod.lift ((CategoryTheory.presheafToSheaf J AddCommGrp).map (CategoryTheory.whiskerRight (CategoryTheory.yoneda.map S.fββ) AddCommGrp.free)) (-(CategoryTheory.presheafToSheaf J AddCommGrp).map (CategoryTheory.whiskerRight (CategoryTheory.yoneda.map S.fββ) AddCommGrp.free))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08