Loogle!
Result
Found 15 declarations mentioning CategoryTheory.StrictlyUnitaryPseudofunctorCore.map.
- CategoryTheory.StrictlyUnitaryPseudofunctorCore.map 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {X Y : B} : (X ⟶ Y) → (self.obj X ⟶ self.obj Y) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map_id 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) (X : B) : self.map (CategoryTheory.CategoryStruct.id X) = CategoryTheory.CategoryStruct.id (self.obj X) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b c : B} (f : a ⟶ b) (g : b ⟶ c) : self.map (CategoryTheory.CategoryStruct.comp f g) ≅ CategoryTheory.CategoryStruct.comp (self.map f) (self.map g) - CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (S : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {X✝ Y✝ : B} (a✝ : X✝ ⟶ Y✝) : (CategoryTheory.StrictlyUnitaryPseudofunctor.mk' S).map a✝ = S.map a✝ - CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapComp 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (S : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a✝ b✝ c✝ : B} (f : a✝ ⟶ b✝) (g : b✝ ⟶ c✝) : (CategoryTheory.StrictlyUnitaryPseudofunctor.mk' S).mapComp f g = S.mapComp f g - CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_mapId 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (S : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) (x : B) : (CategoryTheory.StrictlyUnitaryPseudofunctor.mk' S).mapId x = CategoryTheory.eqToIso ⋯ - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂ 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b : B} {f g : a ⟶ b} : (f ⟶ g) → (self.map f ⟶ self.map g) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_id 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.CategoryStruct.id f) = CategoryTheory.CategoryStruct.id (self.map f) - CategoryTheory.StrictlyUnitaryPseudofunctor.mk'_map₂ 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (S : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a✝ b✝ : B} {f✝ g✝ : a✝ ⟶ b✝} (a✝¹ : f✝ ⟶ g✝) : (CategoryTheory.StrictlyUnitaryPseudofunctor.mk' S).map₂ a✝¹ = S.map₂ a✝¹ - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_comp 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b : B} {f g h : a ⟶ b} (η : f ⟶ g) (θ : g ⟶ h) : self.map₂ (CategoryTheory.CategoryStruct.comp η θ) = CategoryTheory.CategoryStruct.comp (self.map₂ η) (self.map₂ θ) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_whisker_left 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b c : B} (f : a ⟶ b) {g h : b ⟶ c} (η : g ⟶ h) : self.map₂ (CategoryTheory.Bicategory.whiskerLeft f η) = CategoryTheory.CategoryStruct.comp (self.mapComp f g).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.map₂ η)) (self.mapComp f h).inv) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_whisker_right 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b c : B} {f g : a ⟶ b} (η : f ⟶ g) (h : b ⟶ c) : self.map₂ (CategoryTheory.Bicategory.whiskerRight η h) = CategoryTheory.CategoryStruct.comp (self.mapComp f h).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.map₂ η) (self.map h)) (self.mapComp g h).inv) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_left_unitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.leftUnitor f).hom = CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.id a) f).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ⋯) (CategoryTheory.Bicategory.leftUnitor (self.map f)).hom) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_right_unitor 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b : B} (f : a ⟶ b) : self.map₂ (CategoryTheory.Bicategory.rightUnitor f).hom = CategoryTheory.CategoryStruct.comp (self.mapComp f (CategoryTheory.CategoryStruct.id b)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ⋯) (CategoryTheory.Bicategory.rightUnitor (self.map f)).hom) - CategoryTheory.StrictlyUnitaryPseudofunctorCore.map₂_associator 📋 Mathlib.CategoryTheory.Bicategory.Functor.StrictlyUnitary
{B : Type u₁} [CategoryTheory.Bicategory B] {C : Type u₂} [CategoryTheory.Bicategory C] (self : CategoryTheory.StrictlyUnitaryPseudofunctorCore B C) {a b c d : B} (f : a ⟶ b) (g : b ⟶ c) (h : c ⟶ d) : self.map₂ (CategoryTheory.Bicategory.associator f g h).hom = CategoryTheory.CategoryStruct.comp (self.mapComp (CategoryTheory.CategoryStruct.comp f g) h).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerRight (self.mapComp f g).hom (self.map h)) (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.associator (self.map f) (self.map g) (self.map h)).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Bicategory.whiskerLeft (self.map f) (self.mapComp g h).inv) (self.mapComp f (CategoryTheory.CategoryStruct.comp g h)).inv)))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ee8c038
serving mathlib revision 7a9e177