Loogle!
Result
Found 16 declarations mentioning CategoryTheory.StructuredArrow.map.
- CategoryTheory.StructuredArrow.map π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' : D} {T : CategoryTheory.Functor C D} (f : S βΆ S') : CategoryTheory.Functor (CategoryTheory.StructuredArrow S' T) (CategoryTheory.StructuredArrow S T) - CategoryTheory.StructuredArrow.mapIsoMapβ π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {T : CategoryTheory.Functor C D} {S S' : D} (f : S βΆ S') : CategoryTheory.StructuredArrow.map f β CategoryTheory.StructuredArrow.mapβ f (CategoryTheory.CategoryStruct.id T) - CategoryTheory.StructuredArrow.map_id π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S : D} {T : CategoryTheory.Functor C D} {f : CategoryTheory.StructuredArrow S T} : (CategoryTheory.StructuredArrow.map (CategoryTheory.CategoryStruct.id S)).obj f = f - CategoryTheory.StructuredArrow.map_obj_right π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' : D} {T : CategoryTheory.Functor C D} (f : S βΆ S') (X : CategoryTheory.Comma (CategoryTheory.Functor.fromPUnit S') T) : ((CategoryTheory.StructuredArrow.map f).obj X).right = X.right - CategoryTheory.StructuredArrow.map_obj_left π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' : D} {T : CategoryTheory.Functor C D} (f : S βΆ S') (X : CategoryTheory.Comma (CategoryTheory.Functor.fromPUnit S') T) : ((CategoryTheory.StructuredArrow.map f).obj X).left = X.left - CategoryTheory.StructuredArrow.map_mk π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' : D} {Y : C} {T : CategoryTheory.Functor C D} {f : S' βΆ T.obj Y} (g : S βΆ S') : (CategoryTheory.StructuredArrow.map g).obj (CategoryTheory.StructuredArrow.mk f) = CategoryTheory.StructuredArrow.mk (CategoryTheory.CategoryStruct.comp g f) - CategoryTheory.StructuredArrow.map_obj_hom π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' : D} {T : CategoryTheory.Functor C D} (f : S βΆ S') (X : CategoryTheory.Comma (CategoryTheory.Functor.fromPUnit S') T) : ((CategoryTheory.StructuredArrow.map f).obj X).hom = CategoryTheory.CategoryStruct.comp f X.hom - CategoryTheory.StructuredArrow.map_comp π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' S'' : D} {T : CategoryTheory.Functor C D} {f : S βΆ S'} {f' : S' βΆ S''} {h : CategoryTheory.StructuredArrow S'' T} : (CategoryTheory.StructuredArrow.map (CategoryTheory.CategoryStruct.comp f f')).obj h = (CategoryTheory.StructuredArrow.map f).obj ((CategoryTheory.StructuredArrow.map f').obj h) - CategoryTheory.StructuredArrow.map_map_right π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' : D} {T : CategoryTheory.Functor C D} (f : S βΆ S') {Xβ Yβ : CategoryTheory.Comma (CategoryTheory.Functor.fromPUnit S') T} (fβ : Xβ βΆ Yβ) : ((CategoryTheory.StructuredArrow.map f).map fβ).right = fβ.right - CategoryTheory.StructuredArrow.map_map_left π Mathlib.CategoryTheory.Comma.StructuredArrow.Basic
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {S S' : D} {T : CategoryTheory.Functor C D} (f : S βΆ S') {Xβ Yβ : CategoryTheory.Comma (CategoryTheory.Functor.fromPUnit S') T} (fβ : Xβ βΆ Yβ) : ((CategoryTheory.StructuredArrow.map f).map fβ).left = CategoryTheory.CategoryStruct.id Xβ.left - CategoryTheory.Functor.pointwiseRightKanExtension_map π Mathlib.CategoryTheory.Functor.KanExtension.Pointwise
{C : Type u_1} {D : Type u_2} {H : Type u_3} [CategoryTheory.Category.{u_4, u_1} C] [CategoryTheory.Category.{u_5, u_2} D] [CategoryTheory.Category.{u_6, u_3} H] (L : CategoryTheory.Functor C D) (F : CategoryTheory.Functor C H) [L.HasPointwiseRightKanExtension F] {Yβ Yβ : D} (f : Yβ βΆ Yβ) : (L.pointwiseRightKanExtension F).map f = CategoryTheory.Limits.limit.lift ((CategoryTheory.StructuredArrow.proj Yβ L).comp F) { pt := CategoryTheory.Limits.limit ((CategoryTheory.StructuredArrow.proj Yβ L).comp F), Ο := { app := fun g => CategoryTheory.Limits.limit.Ο ((CategoryTheory.StructuredArrow.proj Yβ L).comp F) ((CategoryTheory.StructuredArrow.map f).obj g), naturality := β― } } - CategoryTheory.StructuredArrow.functor_map π Mathlib.CategoryTheory.Comma.StructuredArrow.Functor
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (T : CategoryTheory.Functor C D) {Xβ Yβ : Dα΅α΅} (f : Xβ βΆ Yβ) : (CategoryTheory.StructuredArrow.functor T).map f = CategoryTheory.StructuredArrow.map f.unop - CategoryTheory.Limits.Cone.toStructuredArrowCone π Mathlib.CategoryTheory.Limits.ConeCategory
{J : Type uβ} [CategoryTheory.Category.{vβ, uβ} J] {C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {K : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cone K) (F : CategoryTheory.Functor C D) {X : D} (f : X βΆ F.obj c.pt) : CategoryTheory.Limits.Cone ((F.mapCone c).toStructuredArrow.comp ((CategoryTheory.StructuredArrow.map f).comp (CategoryTheory.StructuredArrow.pre X K F))) - CategoryTheory.Limits.Cone.toStructuredArrowCone_pt π Mathlib.CategoryTheory.Limits.ConeCategory
{J : Type uβ} [CategoryTheory.Category.{vβ, uβ} J] {C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {K : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cone K) (F : CategoryTheory.Functor C D) {X : D} (f : X βΆ F.obj c.pt) : (c.toStructuredArrowCone F f).pt = CategoryTheory.StructuredArrow.mk f - CategoryTheory.Limits.Cone.toStructuredArrowCone_Ο_app π Mathlib.CategoryTheory.Limits.ConeCategory
{J : Type uβ} [CategoryTheory.Category.{vβ, uβ} J] {C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {K : CategoryTheory.Functor J C} (c : CategoryTheory.Limits.Cone K) (F : CategoryTheory.Functor C D) {X : D} (f : X βΆ F.obj c.pt) (j : J) : (c.toStructuredArrowCone F f).Ο.app j = CategoryTheory.StructuredArrow.homMk (c.Ο.app j) β― - CategoryTheory.StructuredArrow.final_map π Mathlib.CategoryTheory.Filtered.Final
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] [CategoryTheory.IsFiltered C] {S S' : D} (f : S βΆ S') (T : CategoryTheory.Functor C D) [T.Final] : (CategoryTheory.StructuredArrow.map f).Final
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08