Loogle!
Result
Found 11 declarations mentioning CategoryTheory.Subgroupoid.map.
- CategoryTheory.Subgroupoid.map 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (S : CategoryTheory.Subgroupoid C) : CategoryTheory.Subgroupoid D - CategoryTheory.Subgroupoid.im.eq_1 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) : CategoryTheory.Subgroupoid.im φ hφ = CategoryTheory.Subgroupoid.map φ hφ ⊤ - CategoryTheory.Subgroupoid.isNormal_map 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] (S : CategoryTheory.Subgroupoid C) {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (hφ' : CategoryTheory.Subgroupoid.im φ hφ = ⊤) (Sn : S.IsNormal) : (CategoryTheory.Subgroupoid.map φ hφ S).IsNormal - CategoryTheory.Subgroupoid.le_comap_map 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (S : CategoryTheory.Subgroupoid C) : S ≤ CategoryTheory.Subgroupoid.comap φ (CategoryTheory.Subgroupoid.map φ hφ S) - CategoryTheory.Subgroupoid.map_comap_le 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (T : CategoryTheory.Subgroupoid D) : CategoryTheory.Subgroupoid.map φ hφ (CategoryTheory.Subgroupoid.comap φ T) ≤ T - CategoryTheory.Subgroupoid.galoisConnection_map_comap 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) : GaloisConnection (CategoryTheory.Subgroupoid.map φ hφ) (CategoryTheory.Subgroupoid.comap φ) - CategoryTheory.Subgroupoid.map_objs_eq 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] (S : CategoryTheory.Subgroupoid C) {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) : (CategoryTheory.Subgroupoid.map φ hφ S).objs = φ.obj '' S.objs - CategoryTheory.Subgroupoid.mem_map_objs_iff 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] (S : CategoryTheory.Subgroupoid C) {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (d : D) : d ∈ (CategoryTheory.Subgroupoid.map φ hφ S).objs ↔ ∃ c ∈ S.objs, φ.obj c = d - CategoryTheory.Subgroupoid.map_le_iff_le_comap 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (S : CategoryTheory.Subgroupoid C) (T : CategoryTheory.Subgroupoid D) : CategoryTheory.Subgroupoid.map φ hφ S ≤ T ↔ S ≤ CategoryTheory.Subgroupoid.comap φ T - CategoryTheory.Subgroupoid.map_mono 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (S T : CategoryTheory.Subgroupoid C) : S ≤ T → CategoryTheory.Subgroupoid.map φ hφ S ≤ CategoryTheory.Subgroupoid.map φ hφ T - CategoryTheory.Subgroupoid.mem_map_iff 📋 Mathlib.CategoryTheory.Groupoid.Subgroupoid
{C : Type u} [CategoryTheory.Groupoid C] {D : Type u_1} [CategoryTheory.Groupoid D] (φ : CategoryTheory.Functor C D) (hφ : Function.Injective φ.obj) (S : CategoryTheory.Subgroupoid C) {c d : D} (f : c ⟶ d) : f ∈ (CategoryTheory.Subgroupoid.map φ hφ S).arrows c d ↔ ∃ a b g, ∃ (ha : φ.obj a = c) (hb : φ.obj b = d) (_ : g ∈ S.arrows a b), f = CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ⋯) (CategoryTheory.CategoryStruct.comp (φ.map g) (CategoryTheory.eqToHom hb))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08