Loogle!
Result
Found 16 declarations mentioning CategoryTheory.Subobject.map.
- CategoryTheory.Subobject.map š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} (f : X ā¶ Y) [CategoryTheory.Mono f] : CategoryTheory.Functor (CategoryTheory.Subobject X) (CategoryTheory.Subobject Y) - CategoryTheory.Subobject.mapPullbackAdj š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} [CategoryTheory.Limits.HasPullbacks C] (f : X ā¶ Y) [CategoryTheory.Mono f] : CategoryTheory.Subobject.map f ⣠CategoryTheory.Subobject.pullback f - CategoryTheory.Subobject.exists_iso_map š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} [CategoryTheory.Limits.HasImages C] (f : X ā¶ Y) [CategoryTheory.Mono f] : CategoryTheory.Subobject.exists f = CategoryTheory.Subobject.map f - CategoryTheory.Subobject.map_id š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X : C} (x : CategoryTheory.Subobject X) : (CategoryTheory.Subobject.map (CategoryTheory.CategoryStruct.id X)).obj x = x - CategoryTheory.Subobject.map_obj_injective š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} (f : X ā¶ Y) [CategoryTheory.Mono f] : Function.Injective (CategoryTheory.Subobject.map f).obj - CategoryTheory.Subobject.map_mk š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {A X Y : C} (i : A ā¶ X) [CategoryTheory.Mono i] (f : X ā¶ Y) [CategoryTheory.Mono f] : (CategoryTheory.Subobject.map f).obj (CategoryTheory.Subobject.mk i) = CategoryTheory.Subobject.mk (CategoryTheory.CategoryStruct.comp i f) - CategoryTheory.Subobject.pullback_map_self š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} [CategoryTheory.Limits.HasPullbacks C] (f : X ā¶ Y) [CategoryTheory.Mono f] (g : CategoryTheory.Subobject X) : (CategoryTheory.Subobject.pullback f).obj ((CategoryTheory.Subobject.map f).obj g) = g - CategoryTheory.Subobject.mapIsoToOrderIso_apply š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} (e : X ā Y) (P : CategoryTheory.Subobject X) : (CategoryTheory.Subobject.mapIsoToOrderIso e) P = (CategoryTheory.Subobject.map e.hom).obj P - CategoryTheory.Subobject.mapIsoToOrderIso_symm_apply š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} (e : X ā Y) (Q : CategoryTheory.Subobject Y) : (CategoryTheory.Subobject.mapIsoToOrderIso e).symm Q = (CategoryTheory.Subobject.map e.inv).obj Q - CategoryTheory.Subobject.map_comp š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y Z : C} (f : X ā¶ Y) (g : Y ā¶ Z) [CategoryTheory.Mono f] [CategoryTheory.Mono g] (x : CategoryTheory.Subobject X) : (CategoryTheory.Subobject.map (CategoryTheory.CategoryStruct.comp f g)).obj x = (CategoryTheory.Subobject.map g).obj ((CategoryTheory.Subobject.map f).obj x) - CategoryTheory.Subobject.map_pullback š Mathlib.CategoryTheory.Subobject.Basic
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Limits.HasPullbacks C] {X Y Z W : C} {f : X ā¶ Y} {g : X ā¶ Z} {h : Y ā¶ W} {k : Z ā¶ W} [CategoryTheory.Mono h] [CategoryTheory.Mono g] (comm : CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g k) (t : CategoryTheory.Limits.IsLimit (CategoryTheory.Limits.PullbackCone.mk f g comm)) (p : CategoryTheory.Subobject Y) : (CategoryTheory.Subobject.map g).obj ((CategoryTheory.Subobject.pullback f).obj p) = (CategoryTheory.Subobject.pullback k).obj ((CategoryTheory.Subobject.map h).obj p) - CategoryTheory.Subobject.map_top š Mathlib.CategoryTheory.Subobject.Lattice
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} (f : X ā¶ Y) [CategoryTheory.Mono f] : (CategoryTheory.Subobject.map f).obj ⤠= CategoryTheory.Subobject.mk f - CategoryTheory.Subobject.map_bot š Mathlib.CategoryTheory.Subobject.Lattice
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] {X Y : C} [CategoryTheory.Limits.HasInitial C] [CategoryTheory.Limits.InitialMonoClass C] (f : X ā¶ Y) [CategoryTheory.Mono f] : (CategoryTheory.Subobject.map f).obj ā„ = ā„ - CategoryTheory.Subobject.inf_map š Mathlib.CategoryTheory.Subobject.Lattice
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Limits.HasPullbacks C] {X Y : C} (g : Y ā¶ X) [CategoryTheory.Mono g] (fā fā : CategoryTheory.Subobject Y) : (CategoryTheory.Subobject.map g).obj (fā ā fā) = (CategoryTheory.Subobject.map g).obj fā ā (CategoryTheory.Subobject.map g).obj fā - CategoryTheory.Subobject.inf_eq_map_pullback š Mathlib.CategoryTheory.Subobject.Lattice
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Limits.HasPullbacks C] {A : C} (fā : CategoryTheory.MonoOver A) (fā : CategoryTheory.Subobject A) : Quotient.mk'' fā ā fā = (CategoryTheory.Subobject.map fā.arrow).obj ((CategoryTheory.Subobject.pullback fā.arrow).obj fā) - CategoryTheory.Subobject.inf_eq_map_pullback' š Mathlib.CategoryTheory.Subobject.Lattice
{C : Type uā} [CategoryTheory.Category.{vā, uā} C] [CategoryTheory.Limits.HasPullbacks C] {A : C} (fā : CategoryTheory.MonoOver A) (fā : CategoryTheory.Subobject A) : (CategoryTheory.Subobject.inf.obj (Quotient.mk'' fā)).obj fā = (CategoryTheory.Subobject.map fā.arrow).obj ((CategoryTheory.Subobject.pullback fā.arrow).obj fā)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65