Loogle!
Result
Found 9 declarations mentioning CategoryTheory.ThinSkeleton.map.
- CategoryTheory.ThinSkeleton.map π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) : CategoryTheory.Functor (CategoryTheory.ThinSkeleton C) (CategoryTheory.ThinSkeleton D) - CategoryTheory.ThinSkeleton.map_id_eq π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] [Quiver.IsThin C] : CategoryTheory.ThinSkeleton.map (CategoryTheory.Functor.id C) = CategoryTheory.Functor.id (CategoryTheory.ThinSkeleton C) - CategoryTheory.ThinSkeleton.lowerAdjunction π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (R : CategoryTheory.Functor D C) (L : CategoryTheory.Functor C D) (h : L β£ R) : CategoryTheory.ThinSkeleton.map L β£ CategoryTheory.ThinSkeleton.map R - CategoryTheory.ThinSkeleton.map_iso_eq π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] [Quiver.IsThin C] {Fβ Fβ : CategoryTheory.Functor D C} (h : Fβ β Fβ) : CategoryTheory.ThinSkeleton.map Fβ = CategoryTheory.ThinSkeleton.map Fβ - CategoryTheory.ThinSkeleton.comp_toThinSkeleton π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) : F.comp (CategoryTheory.toThinSkeleton D) = (CategoryTheory.toThinSkeleton C).comp (CategoryTheory.ThinSkeleton.map F) - CategoryTheory.ThinSkeleton.map_comp_eq π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {E : Type uβ} [CategoryTheory.Category.{vβ, uβ} E] [Quiver.IsThin C] (F : CategoryTheory.Functor E D) (G : CategoryTheory.Functor D C) : CategoryTheory.ThinSkeleton.map (F.comp G) = (CategoryTheory.ThinSkeleton.map F).comp (CategoryTheory.ThinSkeleton.map G) - CategoryTheory.ThinSkeleton.map_obj π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) (aβ : Quotient (CategoryTheory.isIsomorphicSetoid C)) : (CategoryTheory.ThinSkeleton.map F).obj aβ = Quotient.map F.obj β― aβ - CategoryTheory.ThinSkeleton.mapNatTrans π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] {Fβ Fβ : CategoryTheory.Functor C D} (k : Fβ βΆ Fβ) : CategoryTheory.ThinSkeleton.map Fβ βΆ CategoryTheory.ThinSkeleton.map Fβ - CategoryTheory.ThinSkeleton.map_map π Mathlib.CategoryTheory.Skeletal
{C : Type uβ} [CategoryTheory.Category.{vβ, uβ} C] {D : Type uβ} [CategoryTheory.Category.{vβ, uβ} D] (F : CategoryTheory.Functor C D) {X Y : CategoryTheory.ThinSkeleton C} (aβ : X βΆ Y) : (CategoryTheory.ThinSkeleton.map F).map aβ = Quotient.recOnSubsingletonβ (motive := fun x x_1 => (x βΆ x_1) β (Quotient.map F.obj β― x βΆ Quotient.map F.obj β― x_1)) X Y (fun x x_1 k => CategoryTheory.homOfLE β―) aβ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08