Loogle!
Result
Found 15 declarations mentioning CliffordAlgebra.map.
- CliffordAlgebra.map ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (f : Qโ โqแตข Qโ) : CliffordAlgebra Qโ โโ[R] CliffordAlgebra Qโ - CliffordAlgebra.map_id ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} [AddCommGroup Mโ] [Module R Mโ] (Qโ : QuadraticForm R Mโ) : CliffordAlgebra.map (QuadraticMap.Isometry.id Qโ) = AlgHom.id R (CliffordAlgebra Qโ) - CliffordAlgebra.map_surjective ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (f : Qโ โqแตข Qโ) (hf : Function.Surjective โf) : Function.Surjective โ(CliffordAlgebra.map f) - CliffordAlgebra.map_comp_map ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} {Mโ : Type u_6} [AddCommGroup Mโ] [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (f : Qโ โqแตข Qโ) (g : Qโ โqแตข Qโ) : (CliffordAlgebra.map f).comp (CliffordAlgebra.map g) = CliffordAlgebra.map (f.comp g) - CliffordAlgebra.equivOfIsometry_apply ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (e : QuadraticMap.IsometryEquiv Qโ Qโ) (a : CliffordAlgebra Qโ) : (CliffordAlgebra.equivOfIsometry e) a = (CliffordAlgebra.map e.toIsometry) a - CliffordAlgebra.leftInverse_map_of_leftInverse ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (f : Qโ โqแตข Qโ) (g : Qโ โqแตข Qโ) (h : Function.LeftInverse โg โf) : Function.LeftInverse โ(CliffordAlgebra.map g) โ(CliffordAlgebra.map f) - CliffordAlgebra.map_comp_ฮน ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (f : Qโ โqแตข Qโ) : (CliffordAlgebra.map f).toLinearMap โโ CliffordAlgebra.ฮน Qโ = CliffordAlgebra.ฮน Qโ โโ f.toLinearMap - CliffordAlgebra.map_apply_ฮน ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (f : Qโ โqแตข Qโ) (m : Mโ) : (CliffordAlgebra.map f) ((CliffordAlgebra.ฮน Qโ) m) = (CliffordAlgebra.ฮน Qโ) (f m) - CliffordAlgebra.ฮน_range_map_map ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Basic
{R : Type u_1} [CommRing R] {Mโ : Type u_4} {Mโ : Type u_5} [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} (f : Qโ โqแตข Qโ) : Submodule.map (CliffordAlgebra.map f).toLinearMap (LinearMap.range (CliffordAlgebra.ฮน Qโ)) = Submodule.map (CliffordAlgebra.ฮน Qโ) (LinearMap.range f) - QuadraticModuleCat.cliffordAlgebra_map ๐ Mathlib.LinearAlgebra.CliffordAlgebra.CategoryTheory
{R : Type u} [CommRing R] {_M _N : QuadraticModuleCat R} (f : _M โถ _N) : QuadraticModuleCat.cliffordAlgebra.map f = AlgebraCat.ofHom (CliffordAlgebra.map (QuadraticModuleCat.Hom.toIsometry f)) - CliffordAlgebra.toProd.eq_1 ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Prod
{R : Type u_1} {Mโ : Type u_2} {Mโ : Type u_3} [CommRing R] [AddCommGroup Mโ] [AddCommGroup Mโ] [Module R Mโ] [Module R Mโ] (Qโ : QuadraticForm R Mโ) (Qโ : QuadraticForm R Mโ) : CliffordAlgebra.toProd Qโ Qโ = GradedTensorProduct.lift (CliffordAlgebra.evenOdd Qโ) (CliffordAlgebra.evenOdd Qโ) (CliffordAlgebra.map (QuadraticMap.Isometry.inl Qโ Qโ)) (CliffordAlgebra.map (QuadraticMap.Isometry.inr Qโ Qโ)) โฏ - CliffordAlgebra.commute_map_mul_map_of_isOrtho_of_mem_evenOdd_zero_left ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Prod
{R : Type u_1} {Mโ : Type u_2} {Mโ : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup Mโ] [AddCommGroup Mโ] [AddCommGroup N] [Module R Mโ] [Module R Mโ] [Module R N] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R N} (fโ : Qโ โqแตข Qโ) (fโ : Qโ โqแตข Qโ) (hf : โ (x : Mโ) (y : Mโ), QuadraticMap.IsOrtho Qโ (fโ x) (fโ y)) (mโ : CliffordAlgebra Qโ) (mโ : CliffordAlgebra Qโ) {iโ : ZMod 2} (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ 0) (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ iโ) : Commute ((CliffordAlgebra.map fโ) mโ) ((CliffordAlgebra.map fโ) mโ) - CliffordAlgebra.commute_map_mul_map_of_isOrtho_of_mem_evenOdd_zero_right ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Prod
{R : Type u_1} {Mโ : Type u_2} {Mโ : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup Mโ] [AddCommGroup Mโ] [AddCommGroup N] [Module R Mโ] [Module R Mโ] [Module R N] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R N} (fโ : Qโ โqแตข Qโ) (fโ : Qโ โqแตข Qโ) (hf : โ (x : Mโ) (y : Mโ), QuadraticMap.IsOrtho Qโ (fโ x) (fโ y)) (mโ : CliffordAlgebra Qโ) (mโ : CliffordAlgebra Qโ) {iโ : ZMod 2} (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ iโ) (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ 0) : Commute ((CliffordAlgebra.map fโ) mโ) ((CliffordAlgebra.map fโ) mโ) - CliffordAlgebra.map_mul_map_eq_neg_of_isOrtho_of_mem_evenOdd_one ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Prod
{R : Type u_1} {Mโ : Type u_2} {Mโ : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup Mโ] [AddCommGroup Mโ] [AddCommGroup N] [Module R Mโ] [Module R Mโ] [Module R N] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R N} (fโ : Qโ โqแตข Qโ) (fโ : Qโ โqแตข Qโ) (hf : โ (x : Mโ) (y : Mโ), QuadraticMap.IsOrtho Qโ (fโ x) (fโ y)) (mโ : CliffordAlgebra Qโ) (mโ : CliffordAlgebra Qโ) (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ 1) (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ 1) : (CliffordAlgebra.map fโ) mโ * (CliffordAlgebra.map fโ) mโ = -(CliffordAlgebra.map fโ) mโ * (CliffordAlgebra.map fโ) mโ - CliffordAlgebra.map_mul_map_of_isOrtho_of_mem_evenOdd ๐ Mathlib.LinearAlgebra.CliffordAlgebra.Prod
{R : Type u_1} {Mโ : Type u_2} {Mโ : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup Mโ] [AddCommGroup Mโ] [AddCommGroup N] [Module R Mโ] [Module R Mโ] [Module R N] {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R Mโ} {Qโ : QuadraticForm R N} (fโ : Qโ โqแตข Qโ) (fโ : Qโ โqแตข Qโ) (hf : โ (x : Mโ) (y : Mโ), QuadraticMap.IsOrtho Qโ (fโ x) (fโ y)) (mโ : CliffordAlgebra Qโ) (mโ : CliffordAlgebra Qโ) {iโ iโ : ZMod 2} (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ iโ) (hmโ : mโ โ CliffordAlgebra.evenOdd Qโ iโ) : (CliffordAlgebra.map fโ) mโ * (CliffordAlgebra.map fโ) mโ = (-1) ^ (iโ * iโ) โข ((CliffordAlgebra.map fโ) mโ * (CliffordAlgebra.map fโ) mโ)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65