Loogle!
Result
Found 5 declarations mentioning Coalgebra.TensorProduct.map.
- Coalgebra.TensorProduct.map 📋 Mathlib.RingTheory.Coalgebra.TensorProduct
{R : Type u_5} {S : Type u_6} {M : Type u_7} {N : Type u_8} {P : Type u_9} {Q : Type u_10} [CommSemiring R] [CommSemiring S] [Algebra R S] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] [Module S M] [IsScalarTower R S M] [Coalgebra S M] [Module S N] [IsScalarTower R S N] [Coalgebra S N] [Coalgebra R P] [Coalgebra R Q] (f : M →ₗc[S] N) (g : P →ₗc[R] Q) : TensorProduct R M P →ₗc[S] TensorProduct R N Q - Coalgebra.TensorProduct.map_tmul 📋 Mathlib.RingTheory.Coalgebra.TensorProduct
{R : Type u_5} {S : Type u_6} {M : Type u_7} {N : Type u_8} {P : Type u_9} {Q : Type u_10} [CommSemiring R] [CommSemiring S] [Algebra R S] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] [Module S M] [IsScalarTower R S M] [Coalgebra S M] [Module S N] [IsScalarTower R S N] [Coalgebra S N] [Coalgebra R P] [Coalgebra R Q] (f : M →ₗc[S] N) (g : P →ₗc[R] Q) (x : M) (y : P) : (Coalgebra.TensorProduct.map f g) (x ⊗ₜ[R] y) = f x ⊗ₜ[R] g y - Coalgebra.TensorProduct.map_toLinearMap 📋 Mathlib.RingTheory.Coalgebra.TensorProduct
{R : Type u_5} {S : Type u_6} {M : Type u_7} {N : Type u_8} {P : Type u_9} {Q : Type u_10} [CommSemiring R] [CommSemiring S] [Algebra R S] [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid P] [AddCommMonoid Q] [Module R M] [Module R N] [Module R P] [Module R Q] [Module S M] [IsScalarTower R S M] [Coalgebra S M] [Module S N] [IsScalarTower R S N] [Coalgebra S N] [Coalgebra R P] [Coalgebra R Q] (f : M →ₗc[S] N) (g : P →ₗc[R] Q) : ↑(Coalgebra.TensorProduct.map f g) = TensorProduct.AlgebraTensorModule.map ↑f ↑g - CoalgCat.tensorHom_def 📋 Mathlib.Algebra.Category.CoalgCat.Monoidal
(R : Type u) [CommRing R] {X₁✝ Y₁✝ X₂✝ Y₂✝ : CoalgCat R} (f : X₁✝ ⟶ Y₁✝) (g : X₂✝ ⟶ Y₂✝) : CategoryTheory.MonoidalCategoryStruct.tensorHom f g = CoalgCat.ofHom (Coalgebra.TensorProduct.map f.toCoalgHom' g.toCoalgHom') - Bialgebra.TensorProduct.map_toCoalgHom 📋 Mathlib.RingTheory.Bialgebra.TensorProduct
{R : Type u_1} {S : Type u_2} {A : Type u_3} {B : Type u_4} {C : Type u_5} {D : Type u_6} [CommSemiring R] [CommSemiring S] [Semiring A] [Semiring B] [Bialgebra S A] [Bialgebra R B] [Algebra R A] [Algebra R S] [IsScalarTower R S A] [Semiring C] [Semiring D] [Bialgebra S C] [Bialgebra R D] [Algebra R C] [IsScalarTower R S C] (f : A →ₐc[S] C) (g : B →ₐc[R] D) : ↑(Bialgebra.TensorProduct.map f g) = Coalgebra.TensorProduct.map ↑f ↑g
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision ff04530
serving mathlib revision 8623f65