Loogle!
Result
Found 7 declarations mentioning CochainComplex.ConnectData.map.
- CochainComplex.ConnectData.map_id 📋 Mathlib.Algebra.Homology.Embedding.Connect
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K : ChainComplex C ℕ} {L : CochainComplex C ℕ} (h : CochainComplex.ConnectData K L) : h.map h (CategoryTheory.CategoryStruct.id K) (CategoryTheory.CategoryStruct.id L) ⋯ = CategoryTheory.CategoryStruct.id h.cochainComplex - CochainComplex.ConnectData.map 📋 Mathlib.Algebra.Homology.Embedding.Connect
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K K' : ChainComplex C ℕ} {L L' : CochainComplex C ℕ} (h : CochainComplex.ConnectData K L) (h' : CochainComplex.ConnectData K' L') (fK : K ⟶ K') (fL : L ⟶ L') (f_comm : CategoryTheory.CategoryStruct.comp (fK.f 0) h'.d₀ = CategoryTheory.CategoryStruct.comp h.d₀ (fL.f 0)) : h.cochainComplex ⟶ h'.cochainComplex - CochainComplex.ConnectData.map_f 📋 Mathlib.Algebra.Homology.Embedding.Connect
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K K' : ChainComplex C ℕ} {L L' : CochainComplex C ℕ} (h : CochainComplex.ConnectData K L) (h' : CochainComplex.ConnectData K' L') (fK : K ⟶ K') (fL : L ⟶ L') (f_comm : CategoryTheory.CategoryStruct.comp (fK.f 0) h'.d₀ = CategoryTheory.CategoryStruct.comp h.d₀ (fL.f 0)) (x✝ : ℤ) : (h.map h' fK fL f_comm).f x✝ = match x✝ with | Int.ofNat n => fL.f n | Int.negSucc n => fK.f n - CochainComplex.ConnectData.homologyMap_map_of_eq_succ 📋 Mathlib.Algebra.Homology.Embedding.Connect
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K K' : ChainComplex C ℕ} {L L' : CochainComplex C ℕ} (h : CochainComplex.ConnectData K L) (h' : CochainComplex.ConnectData K' L') (fK : K ⟶ K') (fL : L ⟶ L') (f_comm : CategoryTheory.CategoryStruct.comp (fK.f 0) h'.d₀ = CategoryTheory.CategoryStruct.comp h.d₀ (fL.f 0)) (n : ℕ) [NeZero n] (m : ℤ) (hmn : m = ↑n) [HomologicalComplex.HasHomology h.cochainComplex m] [HomologicalComplex.HasHomology L n] [HomologicalComplex.HasHomology h'.cochainComplex m] [HomologicalComplex.HasHomology L' n] : HomologicalComplex.homologyMap (h.map h' fK fL f_comm) m = CategoryTheory.CategoryStruct.comp (h.homologyIsoPos n m hmn).hom (CategoryTheory.CategoryStruct.comp (HomologicalComplex.homologyMap fL n) (h'.homologyIsoPos n m hmn).inv) - CochainComplex.ConnectData.homologyMap_map_of_eq_neg_succ 📋 Mathlib.Algebra.Homology.Embedding.Connect
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K K' : ChainComplex C ℕ} {L L' : CochainComplex C ℕ} (h : CochainComplex.ConnectData K L) (h' : CochainComplex.ConnectData K' L') (fK : K ⟶ K') (fL : L ⟶ L') (f_comm : CategoryTheory.CategoryStruct.comp (fK.f 0) h'.d₀ = CategoryTheory.CategoryStruct.comp h.d₀ (fL.f 0)) (n : ℕ) [NeZero n] (m : ℤ) (hmn : m = -↑(n + 1)) [HomologicalComplex.HasHomology h.cochainComplex m] [HomologicalComplex.HasHomology K n] [HomologicalComplex.HasHomology h'.cochainComplex m] [HomologicalComplex.HasHomology K' n] : HomologicalComplex.homologyMap (h.map h' fK fL f_comm) m = CategoryTheory.CategoryStruct.comp (h.homologyIsoNeg n m hmn).hom (CategoryTheory.CategoryStruct.comp (HomologicalComplex.homologyMap fK n) (h'.homologyIsoNeg n m hmn).inv) - CochainComplex.ConnectData.map_comp_map 📋 Mathlib.Algebra.Homology.Embedding.Connect
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K K' K'' : ChainComplex C ℕ} {L L' L'' : CochainComplex C ℕ} (h : CochainComplex.ConnectData K L) (h' : CochainComplex.ConnectData K' L') (h'' : CochainComplex.ConnectData K'' L'') (fK : K ⟶ K') (fL : L ⟶ L') (f_comm : CategoryTheory.CategoryStruct.comp (fK.f 0) h'.d₀ = CategoryTheory.CategoryStruct.comp h.d₀ (fL.f 0)) (fK' : K' ⟶ K'') (fL' : L' ⟶ L'') (f_comm' : CategoryTheory.CategoryStruct.comp (fK'.f 0) h''.d₀ = CategoryTheory.CategoryStruct.comp h'.d₀ (fL'.f 0)) : CategoryTheory.CategoryStruct.comp (h.map h' fK fL f_comm) (h'.map h'' fK' fL' f_comm') = h.map h'' (CategoryTheory.CategoryStruct.comp fK fK') (CategoryTheory.CategoryStruct.comp fL fL') ⋯ - CochainComplex.ConnectData.map.congr_simp 📋 Mathlib.Algebra.Homology.Embedding.Connect
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K K' : ChainComplex C ℕ} {L L' : CochainComplex C ℕ} (h : CochainComplex.ConnectData K L) (h' : CochainComplex.ConnectData K' L') (fK fK✝ : K ⟶ K') (e_fK : fK = fK✝) (fL fL✝ : L ⟶ L') (e_fL : fL = fL✝) (f_comm : CategoryTheory.CategoryStruct.comp (fK.f 0) h'.d₀ = CategoryTheory.CategoryStruct.comp h.d₀ (fL.f 0)) : h.map h' fK fL f_comm = h.map h' fK✝ fL✝ ⋯
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→and∀) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision edaf32c