Loogle!
Result
Found 9 declarations mentioning CochainComplex.HomComplex.Cochain.map.
- CochainComplex.HomComplex.Cochain.map š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {K L : CochainComplex C ā¤} {n : ā¤} {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (z : CochainComplex.HomComplex.Cochain K L n) (Φ : CategoryTheory.Functor C D) [Φ.Additive] : CochainComplex.HomComplex.Cochain ((Φ.mapHomologicalComplex (ComplexShape.up ā¤)).obj K) ((Φ.mapHomologicalComplex (ComplexShape.up ā¤)).obj L) n - CochainComplex.HomComplex.Ī“_map š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {K L : CochainComplex C ā¤} (n m : ā¤) {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (z : CochainComplex.HomComplex.Cochain K L n) (Φ : CategoryTheory.Functor C D) [Φ.Additive] : CochainComplex.HomComplex.Ī“ n m (z.map Φ) = (CochainComplex.HomComplex.Ī“ n m z).map Φ - CochainComplex.HomComplex.Cochain.map_v š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {K L : CochainComplex C ā¤} {n : ā¤} {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (z : CochainComplex.HomComplex.Cochain K L n) (Φ : CategoryTheory.Functor C D) [Φ.Additive] (p q : ā¤) (hpq : p + n = q) : (z.map Φ).v p q hpq = Φ.map (z.v p q hpq) - CochainComplex.HomComplex.Cochain.map_comp š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {F G : CochainComplex C ā¤} (K : CochainComplex C ā¤) {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] {nā nā nāā : ā¤} (zā : CochainComplex.HomComplex.Cochain F G nā) (zā : CochainComplex.HomComplex.Cochain G K nā) (h : nā + nā = nāā) (Φ : CategoryTheory.Functor C D) [Φ.Additive] : (zā.comp zā h).map Φ = (zā.map Φ).comp (zā.map Φ) h - CochainComplex.HomComplex.Cochain.map_ofHom š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] (K L : CochainComplex C ā¤) {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (f : K ā¶ L) (Φ : CategoryTheory.Functor C D) [Φ.Additive] : (CochainComplex.HomComplex.Cochain.ofHom f).map Φ = CochainComplex.HomComplex.Cochain.ofHom ((Φ.mapHomologicalComplex (ComplexShape.up ā¤)).map f) - CochainComplex.HomComplex.Cochain.map_neg š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {K L : CochainComplex C ā¤} {n : ā¤} {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (z : CochainComplex.HomComplex.Cochain K L n) (Φ : CategoryTheory.Functor C D) [Φ.Additive] : (-z).map Φ = -z.map Φ - CochainComplex.HomComplex.Cochain.map_zero š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] (K L : CochainComplex C ā¤) (n : ā¤) {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (Φ : CategoryTheory.Functor C D) [Φ.Additive] : CochainComplex.HomComplex.Cochain.map 0 Φ = 0 - CochainComplex.HomComplex.Cochain.map_sub š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {K L : CochainComplex C ā¤} {n : ā¤} {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (z z' : CochainComplex.HomComplex.Cochain K L n) (Φ : CategoryTheory.Functor C D) [Φ.Additive] : (z - z').map Φ = z.map Φ - z'.map Φ - CochainComplex.HomComplex.Cochain.map_add š Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {K L : CochainComplex C ā¤} {n : ā¤} {D : Type u_2} [CategoryTheory.Category.{u_3, u_2} D] [CategoryTheory.Preadditive D] (z z' : CochainComplex.HomComplex.Cochain K L n) (Φ : CategoryTheory.Functor C D) [Φ.Additive] : (z + z').map Φ = z.map Φ + z'.map Φ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
šReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
š"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
š_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
šReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
š(?a -> ?b) -> List ?a -> List ?b
šList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
š|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allā
andā
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
š|- _ < _ ā tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
š Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ ā _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65