Loogle!
Result
Found 13 declarations mentioning CochainComplex.mappingCone.map.
- CochainComplex.mappingCone.triangleMap_hom₃ 📋 Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K₁ L₁ K₂ L₂ : CochainComplex C ℤ} (φ₁ : K₁ ⟶ L₁) (φ₂ : K₂ ⟶ L₂) (a : K₁ ⟶ K₂) (b : L₁ ⟶ L₂) (comm : CategoryTheory.CategoryStruct.comp φ₁ b = CategoryTheory.CategoryStruct.comp a φ₂) : (CochainComplex.mappingCone.triangleMap φ₁ φ₂ a b comm).hom₃ = CochainComplex.mappingCone.map φ₁ φ₂ a b comm - CochainComplex.mappingCone.map 📋 Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K₁ L₁ K₂ L₂ : CochainComplex C ℤ} (φ₁ : K₁ ⟶ L₁) (φ₂ : K₂ ⟶ L₂) (a : K₁ ⟶ K₂) (b : L₁ ⟶ L₂) (comm : CategoryTheory.CategoryStruct.comp φ₁ b = CategoryTheory.CategoryStruct.comp a φ₂) : CochainComplex.mappingCone φ₁ ⟶ CochainComplex.mappingCone φ₂ - CochainComplex.mappingCone.map.eq_1 📋 Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K₁ L₁ K₂ L₂ : CochainComplex C ℤ} (φ₁ : K₁ ⟶ L₁) (φ₂ : K₂ ⟶ L₂) (a : K₁ ⟶ K₂) (b : L₁ ⟶ L₂) (comm : CategoryTheory.CategoryStruct.comp φ₁ b = CategoryTheory.CategoryStruct.comp a φ₂) : CochainComplex.mappingCone.map φ₁ φ₂ a b comm = CochainComplex.mappingCone.desc φ₁ ((CochainComplex.HomComplex.Cochain.ofHom a).comp (CochainComplex.mappingCone.inl φ₂) CochainComplex.mappingCone.homotopyToZeroOfId._proof_7) (CategoryTheory.CategoryStruct.comp b (CochainComplex.mappingCone.inr φ₂)) ⋯ - CochainComplex.mappingCone.map_eq_mapOfHomotopy 📋 Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K₁ L₁ K₂ L₂ : CochainComplex C ℤ} (φ₁ : K₁ ⟶ L₁) (φ₂ : K₂ ⟶ L₂) (a : K₁ ⟶ K₂) (b : L₁ ⟶ L₂) (comm : CategoryTheory.CategoryStruct.comp φ₁ b = CategoryTheory.CategoryStruct.comp a φ₂) : CochainComplex.mappingCone.map φ₁ φ₂ a b comm = CochainComplex.mappingCone.mapOfHomotopy (Homotopy.ofEq comm) - CochainComplex.mappingCone.map_id 📋 Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K L : CochainComplex C ℤ} (φ : K ⟶ L) : CochainComplex.mappingCone.map φ φ (CategoryTheory.CategoryStruct.id K) (CategoryTheory.CategoryStruct.id L) ⋯ = CategoryTheory.CategoryStruct.id (CochainComplex.mappingCone φ) - CochainComplex.mappingCone.map_comp 📋 Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K₁ L₁ K₂ L₂ K₃ L₃ : CochainComplex C ℤ} (φ₁ : K₁ ⟶ L₁) (φ₂ : K₂ ⟶ L₂) (φ₃ : K₃ ⟶ L₃) (a : K₁ ⟶ K₂) (b : L₁ ⟶ L₂) (comm : CategoryTheory.CategoryStruct.comp φ₁ b = CategoryTheory.CategoryStruct.comp a φ₂) (a' : K₂ ⟶ K₃) (b' : L₂ ⟶ L₃) (comm' : CategoryTheory.CategoryStruct.comp φ₂ b' = CategoryTheory.CategoryStruct.comp a' φ₃) : CochainComplex.mappingCone.map φ₁ φ₃ (CategoryTheory.CategoryStruct.comp a a') (CategoryTheory.CategoryStruct.comp b b') ⋯ = CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.map φ₁ φ₂ a b comm) (CochainComplex.mappingCone.map φ₂ φ₃ a' b' comm') - CochainComplex.mappingCone.map_comp_assoc 📋 Mathlib.Algebra.Homology.HomotopyCategory.Pretriangulated
{C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {K₁ L₁ K₂ L₂ K₃ L₃ : CochainComplex C ℤ} (φ₁ : K₁ ⟶ L₁) (φ₂ : K₂ ⟶ L₂) (φ₃ : K₃ ⟶ L₃) (a : K₁ ⟶ K₂) (b : L₁ ⟶ L₂) (comm : CategoryTheory.CategoryStruct.comp φ₁ b = CategoryTheory.CategoryStruct.comp a φ₂) (a' : K₂ ⟶ K₃) (b' : L₂ ⟶ L₃) (comm' : CategoryTheory.CategoryStruct.comp φ₂ b' = CategoryTheory.CategoryStruct.comp a' φ₃) {Z : HomologicalComplex C (ComplexShape.up ℤ)} (h : CochainComplex.mappingCone φ₃ ⟶ Z) : CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.map φ₁ φ₃ (CategoryTheory.CategoryStruct.comp a a') (CategoryTheory.CategoryStruct.comp b b') ⋯) h = CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.map φ₁ φ₂ a b comm) (CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.map φ₂ φ₃ a' b' comm') h) - CochainComplex.mappingConeCompTriangle_mor₁ 📋 Mathlib.Algebra.Homology.HomotopyCategory.Triangulated
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ X₃ : CochainComplex C ℤ} (f : X₁ ⟶ X₂) (g : X₂ ⟶ X₃) : (CochainComplex.mappingConeCompTriangle f g).mor₁ = CochainComplex.mappingCone.map f (CategoryTheory.CategoryStruct.comp f g) (CategoryTheory.CategoryStruct.id X₁) g ⋯ - CochainComplex.mappingConeCompTriangle_mor₂ 📋 Mathlib.Algebra.Homology.HomotopyCategory.Triangulated
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ X₃ : CochainComplex C ℤ} (f : X₁ ⟶ X₂) (g : X₂ ⟶ X₃) : (CochainComplex.mappingConeCompTriangle f g).mor₂ = CochainComplex.mappingCone.map (CategoryTheory.CategoryStruct.comp f g) g f (CategoryTheory.CategoryStruct.id X₃) ⋯ - CochainComplex.mappingConeCompTriangle_mor₃_naturality 📋 Mathlib.Algebra.Homology.HomotopyCategory.Triangulated
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ X₃ : CochainComplex C ℤ} (f : X₁ ⟶ X₂) (g : X₂ ⟶ X₃) {Y₁ Y₂ Y₃ : CochainComplex C ℤ} (f' : Y₁ ⟶ Y₂) (g' : Y₂ ⟶ Y₃) (φ : CategoryTheory.ComposableArrows.mk₂ f g ⟶ CategoryTheory.ComposableArrows.mk₂ f' g') : CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.map g g' (φ.app 1) (φ.app 2) ⋯) (CochainComplex.mappingConeCompTriangle f' g').mor₃ = CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeCompTriangle f g).mor₃ ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map (CochainComplex.mappingCone.map f f' (φ.app 0) (φ.app 1) ⋯)) - CochainComplex.mappingConeCompTriangle_mor₃_naturality_assoc 📋 Mathlib.Algebra.Homology.HomotopyCategory.Triangulated
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ X₃ : CochainComplex C ℤ} (f : X₁ ⟶ X₂) (g : X₂ ⟶ X₃) {Y₁ Y₂ Y₃ : CochainComplex C ℤ} (f' : Y₁ ⟶ Y₂) (g' : Y₂ ⟶ Y₃) (φ : CategoryTheory.ComposableArrows.mk₂ f g ⟶ CategoryTheory.ComposableArrows.mk₂ f' g') {Z : HomologicalComplex C (ComplexShape.up ℤ)} (h : (CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).obj (CochainComplex.mappingConeCompTriangle f' g').obj₁ ⟶ Z) : CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.map g g' (φ.app 1) (φ.app 2) ⋯) (CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeCompTriangle f' g').mor₃ h) = CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeCompTriangle f g).mor₃ (CategoryTheory.CategoryStruct.comp ((CategoryTheory.shiftFunctor (CochainComplex C ℤ) 1).map (CochainComplex.mappingCone.map f f' (φ.app 0) (φ.app 1) ⋯)) h) - CochainComplex.mappingConeCompHomotopyEquiv_comm₁ 📋 Mathlib.Algebra.Homology.HomotopyCategory.Triangulated
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ X₃ : CochainComplex C ℤ} (f : X₁ ⟶ X₂) (g : X₂ ⟶ X₃) : CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.inr (CochainComplex.mappingCone.map f (CategoryTheory.CategoryStruct.comp f g) (CategoryTheory.CategoryStruct.id X₁) g ⋯)) (CochainComplex.mappingConeCompHomotopyEquiv f g).inv = (CochainComplex.mappingConeCompTriangle f g).mor₂ - CochainComplex.mappingConeCompHomotopyEquiv_comm₁_assoc 📋 Mathlib.Algebra.Homology.HomotopyCategory.Triangulated
{C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ X₃ : CochainComplex C ℤ} (f : X₁ ⟶ X₂) (g : X₂ ⟶ X₃) {Z : CochainComplex C ℤ} (h : CochainComplex.mappingCone g ⟶ Z) : CategoryTheory.CategoryStruct.comp (CochainComplex.mappingCone.inr (CochainComplex.mappingCone.map f (CategoryTheory.CategoryStruct.comp f g) (CategoryTheory.CategoryStruct.id X₁) g ⋯)) (CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeCompHomotopyEquiv f g).inv h) = CategoryTheory.CategoryStruct.comp (CochainComplex.mappingConeCompTriangle f g).mor₂ h
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65