Loogle!
Result
Found 19 declarations mentioning Computation.map.
- Computation.map 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) : Computation α → Computation β - Computation.map_id 📋 Mathlib.Data.Seq.Computation
{α : Type u} (s : Computation α) : Computation.map id s = s - Computation.terminates_map 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (s : Computation α) [s.Terminates] : (Computation.map f s).Terminates - Computation.terminates_map_iff 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (s : Computation α) : (Computation.map f s).Terminates ↔ s.Terminates - Computation.map_pure 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (a : α) : Computation.map f (Computation.pure a) = Computation.pure (f a) - Computation.map_think 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (s : Computation α) : Computation.map f s.think = (Computation.map f s).think - Computation.map_congr 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} {s1 s2 : Computation α} {f : α → β} (h1 : s1.Equiv s2) : (Computation.map f s1).Equiv (Computation.map f s2) - Computation.has_map_eq_map 📋 Mathlib.Data.Seq.Computation
{α β : Type u} (f : α → β) (c : Computation α) : f <$> c = Computation.map f c - Computation.bind_pure 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (s : Computation α) : s.bind (Computation.pure ∘ f) = Computation.map f s - Computation.mem_map 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) {a : α} {s : Computation α} (m : a ∈ s) : f a ∈ Computation.map f s - Computation.map_comp 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} {γ : Type w} (f : α → β) (g : β → γ) (s : Computation α) : Computation.map (g ∘ f) s = Computation.map g (Computation.map f s) - Computation.exists_of_mem_map 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} {f : α → β} {b : β} {s : Computation α} (h : b ∈ Computation.map f s) : ∃ a ∈ s, f a = b - Computation.destruct_map 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (s : Computation α) : (Computation.map f s).destruct = Computation.lmap f (Computation.rmap (Computation.map f) s.destruct) - Computation.liftRel_map 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} {γ : Type w} {δ : Type u_1} (R : α → β → Prop) (S : γ → δ → Prop) {s1 : Computation α} {s2 : Computation β} {f1 : α → γ} {f2 : β → δ} (h1 : Computation.LiftRel R s1 s2) (h2 : ∀ {a : α} {b : β}, R a b → S (f1 a) (f2 b)) : Computation.LiftRel S (Computation.map f1 s1) (Computation.map f2 s2) - Computation.map.eq_1 📋 Mathlib.Data.Seq.Computation
{α : Type u} {β : Type v} (f : α → β) (s : Stream' (Option α)) (al : ∀ ⦃n : ℕ⦄ ⦃a : α⦄, s n = some a → s (n + 1) = some a) : Computation.map f ⟨s, al⟩ = ⟨Stream'.map (fun o => Option.casesOn o none (some ∘ f)) s, ⋯⟩ - Stream'.WSeq.head.eq_1 📋 Mathlib.Data.WSeq.Basic
{α : Type u} (s : Stream'.WSeq α) : s.head = Computation.map (fun x => Prod.fst <$> x) s.destruct - Stream'.WSeq.destruct_map 📋 Mathlib.Data.WSeq.Basic
{α : Type u} {β : Type v} (f : α → β) (s : Stream'.WSeq α) : (Stream'.WSeq.map f s).destruct = Computation.map (Option.map (Prod.map f (Stream'.WSeq.map f))) s.destruct - Computation.map_parallel 📋 Mathlib.Data.Seq.Parallel
{α : Type u} {β : Type v} (f : α → β) (S : Stream'.WSeq (Computation α)) : Computation.map f (Computation.parallel S) = Computation.parallel (Stream'.WSeq.map (Computation.map f) S) - Stream'.WSeq.length_eq_map 📋 Mathlib.Data.WSeq.Defs
{α : Type u} (s : Stream'.WSeq α) : s.length = Computation.map List.length s.toList
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65