Loogle!
Result
Found 109 declarations mentioning ContinuousLinearMap and Finset.sum.
- ContinuousLinearMap.coe_sum π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [ContinuousAdd Mβ] {ΞΉ : Type u_9} (t : Finset ΞΉ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) : β(β d β t, f d) = β d β t, β(f d) - ContinuousLinearMap.sum_apply π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [ContinuousAdd Mβ] {ΞΉ : Type u_9} (t : Finset ΞΉ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) (b : Mβ) : (β d β t, f d) b = β d β t, (f d) b - ContinuousLinearMap.coe_sum' π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [ContinuousAdd Mβ] {ΞΉ : Type u_9} (t : Finset ΞΉ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) : β(β d β t, f d) = β d β t, β(f d) - ContinuousLinearMap.finset_sum_comp π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} {Rβ : Type u_3} [Semiring Rβ] [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_7} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [RingHomCompTriple Οββ Οββ Οββ] {ΞΉ : Type u_9} {s : Finset ΞΉ} [ContinuousAdd Mβ] (g : ΞΉ β Mβ βSL[Οββ] Mβ) (f : Mβ βSL[Οββ] Mβ) : (β i β s, g i).comp f = β i β s, (g i).comp f - ContinuousLinearMap.comp_finset_sum π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} {Rβ : Type u_3} [Semiring Rβ] [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_7} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [RingHomCompTriple Οββ Οββ Οββ] {ΞΉ : Type u_9} {s : Finset ΞΉ} [ContinuousAdd Mβ] [ContinuousAdd Mβ] (g : Mβ βSL[Οββ] Mβ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) : g.comp (β i β s, f i) = β i β s, g.comp (f i) - ContinuousLinearMap.sum_comp_single π Mathlib.Topology.Algebra.Module.LinearMapPiProd
(R : Type u_1) [Semiring R] {M : Type u_2} [TopologicalSpace M] [AddCommMonoid M] [Module R M] {ΞΉ : Type u_4} (Ο : ΞΉ β Type u_5) [(i : ΞΉ) β TopologicalSpace (Ο i)] [(i : ΞΉ) β AddCommMonoid (Ο i)] [(i : ΞΉ) β Module R (Ο i)] [Fintype ΞΉ] [DecidableEq ΞΉ] (L : ((i : ΞΉ) β Ο i) βL[R] M) (v : (i : ΞΉ) β Ο i) : β i, (L.comp (ContinuousLinearMap.single R Ο i)) (v i) = L v - ContinuousMultilinearMap.linearDeriv_apply π Mathlib.Topology.Algebra.Module.Multilinear.Basic
{R : Type u} {ΞΉ : Type v} {Mβ : ΞΉ β Type wβ} {Mβ : Type wβ} [Semiring R] [(i : ΞΉ) β AddCommMonoid (Mβ i)] [AddCommMonoid Mβ] [(i : ΞΉ) β Module R (Mβ i)] [Module R Mβ] [(i : ΞΉ) β TopologicalSpace (Mβ i)] [TopologicalSpace Mβ] (f : ContinuousMultilinearMap R Mβ Mβ) [ContinuousAdd Mβ] [DecidableEq ΞΉ] [Fintype ΞΉ] (x y : (i : ΞΉ) β Mβ i) : (f.linearDeriv x) y = β i, f (Function.update x i (y i)) - ContinuousMultilinearMap.fderivCompContinuousLinearMap_apply π Mathlib.Analysis.Normed.Module.Multilinear.Basic
{π : Type u} {ΞΉ : Type v} {E : ΞΉ β Type wE} {Eβ : ΞΉ β Type wEβ} {G : Type wG} [NontriviallyNormedField π] [(i : ΞΉ) β SeminormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [(i : ΞΉ) β SeminormedAddCommGroup (Eβ i)] [(i : ΞΉ) β NormedSpace π (Eβ i)] [SeminormedAddCommGroup G] [NormedSpace π G] [Fintype ΞΉ] [DecidableEq ΞΉ] (f : ContinuousMultilinearMap π Eβ G) (g dg : (i : ΞΉ) β E i βL[π] Eβ i) (v : (i : ΞΉ) β E i) : ((f.fderivCompContinuousLinearMap g) dg) v = β i, f fun j => (Function.update g i (dg i) j) (v j) - Module.Basis.constrL_apply π Mathlib.Topology.Algebra.Module.FiniteDimension
{π : Type u} [hnorm : NontriviallyNormedField π] {E : Type v} [AddCommGroup E] [Module π E] [TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousSMul π E] {F : Type w} [AddCommGroup F] [Module π F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul π F] [CompleteSpace π] [T2Space E] {ΞΉ : Type u_2} [Fintype ΞΉ] (v : Module.Basis ΞΉ π E) (f : ΞΉ β F) (e : E) : (v.constrL f) e = β i, v.equivFun e i β’ f i - MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] {m : MeasurableSpace Ξ±} (T : Set Ξ± β F' βL[β] F) (f : MeasureTheory.SimpleFunc Ξ± F') : βMeasureTheory.SimpleFunc.setToSimpleFunc T fβ β€ β x β f.range, βT (βf β»ΒΉ' {x})β * βxβ - MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} (T : Set Ξ± β F βL[β] F') {C : β} (hT_norm : β (s : Set Ξ±), MeasurableSet s β βT sβ β€ C * ΞΌ.real s) (f : MeasureTheory.SimpleFunc Ξ± F) : βMeasureTheory.SimpleFunc.setToSimpleFunc T fβ β€ C * β x β f.range, ΞΌ.real (βf β»ΒΉ' {x}) * βxβ - MeasureTheory.SimpleFunc.setToSimpleFunc.eq_1 π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] {xβ : MeasurableSpace Ξ±} (T : Set Ξ± β F βL[β] F') (f : MeasureTheory.SimpleFunc Ξ± F) : MeasureTheory.SimpleFunc.setToSimpleFunc T f = β x β f.range, (T (βf β»ΒΉ' {x})) x - MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm_of_integrable π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {E : Type u_2} {F' : Type u_4} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F'] [NormedSpace β F'] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} (T : Set Ξ± β E βL[β] F') {C : β} (hT_norm : β (s : Set Ξ±), MeasurableSet s β ΞΌ s < β€ β βT sβ β€ C * ΞΌ.real s) (f : MeasureTheory.SimpleFunc Ξ± E) (hf : MeasureTheory.Integrable (βf) ΞΌ) : βMeasureTheory.SimpleFunc.setToSimpleFunc T fβ β€ C * β x β f.range, ΞΌ.real (βf β»ΒΉ' {x}) * βxβ - MeasureTheory.SimpleFunc.setToSimpleFunc_eq_sum_filter π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] [DecidablePred fun x => x β 0] {m : MeasurableSpace Ξ±} (T : Set Ξ± β F βL[β] F') (f : MeasureTheory.SimpleFunc Ξ± F) : MeasureTheory.SimpleFunc.setToSimpleFunc T f = β x β f.range with x β 0, (T (βf β»ΒΉ' {x})) x - MeasureTheory.SimpleFunc.map_setToSimpleFunc π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} {G : Type u_5} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] [NormedAddCommGroup G] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} (T : Set Ξ± β F βL[β] F') (h_add : MeasureTheory.FinMeasAdditive ΞΌ T) {f : MeasureTheory.SimpleFunc Ξ± G} (hf : MeasureTheory.Integrable (βf) ΞΌ) {g : G β F} (hg : g 0 = 0) : MeasureTheory.SimpleFunc.setToSimpleFunc T (MeasureTheory.SimpleFunc.map g f) = β x β f.range, (T (βf β»ΒΉ' {x})) (g x) - MeasureTheory.setToFun_finset_sum π Mathlib.MeasureTheory.Integral.SetToL1
{Ξ± : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} [CompleteSpace F] {T : Set Ξ± β E βL[β] F} {C : β} (hT : MeasureTheory.DominatedFinMeasAdditive ΞΌ T C) {ΞΉ : Type u_7} (s : Finset ΞΉ) {f : ΞΉ β Ξ± β E} (hf : β i β s, MeasureTheory.Integrable (f i) ΞΌ) : (MeasureTheory.setToFun ΞΌ T hT fun a => β i β s, f i a) = β i β s, MeasureTheory.setToFun ΞΌ T hT (f i) - MeasureTheory.setToFun_finset_sum' π Mathlib.MeasureTheory.Integral.SetToL1
{Ξ± : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} [CompleteSpace F] {T : Set Ξ± β E βL[β] F} {C : β} (hT : MeasureTheory.DominatedFinMeasAdditive ΞΌ T C) {ΞΉ : Type u_7} (s : Finset ΞΉ) {f : ΞΉ β Ξ± β E} (hf : β i β s, MeasureTheory.Integrable (f i) ΞΌ) : MeasureTheory.setToFun ΞΌ T hT (β i β s, f i) = β i β s, MeasureTheory.setToFun ΞΌ T hT (f i) - OrthogonalFamily.sum_projection_of_mem_iSup π Mathlib.Analysis.InnerProductSpace.Projection.FiniteDimensional
{π : Type u_1} {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_4} [Fintype ΞΉ] {V : ΞΉ β Submodule π E} [β (i : ΞΉ), CompleteSpace β₯(V i)] (hV : OrthogonalFamily π (fun i => β₯(V i)) fun i => (V i).subtypeβα΅’) (x : E) (hx : x β iSup V) : β i, (V i).starProjection x = x - OrthonormalBasis.orthogonalProjection_eq_sum π Mathlib.Analysis.InnerProductSpace.PiL2
{ΞΉ : Type u_1} {π : Type u_3} [RCLike π] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace π E] [Fintype ΞΉ] {U : Submodule π E} [CompleteSpace β₯U] (b : OrthonormalBasis ΞΉ π β₯U) (x : E) : U.orthogonalProjection x = β i, inner π (β(b i)) x β’ b i - BoxIntegral.integralSum_biUnionTagged π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) (Ο : BoxIntegral.Prepartition I) (Οi : (J : BoxIntegral.Box ΞΉ) β BoxIntegral.TaggedPrepartition J) : BoxIntegral.integralSum f vol (Ο.biUnionTagged Οi) = β J β Ο.boxes, BoxIntegral.integralSum f vol (Οi J) - BoxIntegral.integralSum_fiberwise π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ξ± : Type u_1} (g : BoxIntegral.Box ΞΉ β Ξ±) (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) (Ο : BoxIntegral.TaggedPrepartition I) : β y β Finset.image g Ο.boxes, BoxIntegral.integralSum f vol (Ο.filter fun x => g x = y) = BoxIntegral.integralSum f vol Ο - BoxIntegral.Integrable.tendsto_integralSum_sum_integral π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (Οβ : BoxIntegral.Prepartition I) : Filter.Tendsto (BoxIntegral.integralSum f vol) (BoxIntegral.IntegrationParams.toFilteriUnion I Οβ) (nhds (β J β Οβ.boxes, BoxIntegral.integral J l f vol)) - BoxIntegral.HasIntegral.sum π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {Ξ± : Type u_1} {s : Finset Ξ±} {f : Ξ± β (ΞΉ β β) β E} {g : Ξ± β F} (h : β i β s, BoxIntegral.HasIntegral I l (f i) vol (g i)) : BoxIntegral.HasIntegral I l (fun x => β i β s, f i x) vol (β i β s, g i) - BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.TaggedPrepartition I} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {c : NNReal} {Ξ΅ : β} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (h0 : 0 < Ξ΅) (hΟ : l.MemBaseSet I c (h.convergenceR Ξ΅ c) Ο) : dist (BoxIntegral.integralSum f vol Ο) (β J β Ο.boxes, BoxIntegral.integral J l f vol) β€ Ξ΅ - BoxIntegral.Integrable.sum_integral_congr π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) {Οβ Οβ : BoxIntegral.Prepartition I} (hU : Οβ.iUnion = Οβ.iUnion) : β J β Οβ.boxes, BoxIntegral.integral J l f vol = β J β Οβ.boxes, BoxIntegral.integral J l f vol - BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.TaggedPrepartition I} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {c : NNReal} {Ξ΅ : β} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (h0 : 0 < Ξ΅) (hΟ : l.MemBaseSet I c (h.convergenceR Ξ΅ c) Ο) {Οβ : BoxIntegral.Prepartition I} (hU : Ο.iUnion = Οβ.iUnion) : dist (BoxIntegral.integralSum f vol Ο) (β J β Οβ.boxes, BoxIntegral.integral J l f vol) β€ Ξ΅ - BoxIntegral.integralSum.eq_1 π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) (Ο : BoxIntegral.TaggedPrepartition I) : BoxIntegral.integralSum f vol Ο = β J β Ο.boxes, (vol J) (f (Ο.tag J)) - BoxIntegral.integralSum_sub_partitions π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) {Οβ Οβ : BoxIntegral.TaggedPrepartition I} (hβ : Οβ.IsPartition) (hβ : Οβ.IsPartition) : BoxIntegral.integralSum f vol Οβ - BoxIntegral.integralSum f vol Οβ = β J β (Οβ.toPrepartition β Οβ.toPrepartition).boxes, ((vol J) (f ((Οβ.infPrepartition Οβ.toPrepartition).tag J)) - (vol J) (f ((Οβ.infPrepartition Οβ.toPrepartition).tag J))) - InnerProductSpace.gramSchmidt.eq_1 π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : InnerProductSpace.gramSchmidt π f n = f n - β i, (Submodule.span π {InnerProductSpace.gramSchmidt π f βi}).starProjection (f n) - InnerProductSpace.gramSchmidt.eq_def π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : InnerProductSpace.gramSchmidt π f n = f n - β i, (Submodule.span π {InnerProductSpace.gramSchmidt π f βi}).starProjection (f n) - InnerProductSpace.gramSchmidt_def π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : InnerProductSpace.gramSchmidt π f n = f n - β i β Finset.Iio n, (Submodule.span π {InnerProductSpace.gramSchmidt π f i}).starProjection (f n) - InnerProductSpace.gramSchmidt_def' π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : f n = InnerProductSpace.gramSchmidt π f n + β i β Finset.Iio n, (Submodule.span π {InnerProductSpace.gramSchmidt π f i}).starProjection (f n) - FormalMultilinearSeries.radius_rightInv_pos_of_radius_pos_aux2 π Mathlib.Analysis.Analytic.Inverse
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {n : β} (hn : 2 β€ n + 1) (p : FormalMultilinearSeries π E F) (i : E βL[π] F) {r a C : β} (hr : 0 β€ r) (ha : 0 β€ a) (hC : 0 β€ C) (hp : β (n : β), βp nβ β€ C * r ^ n) : β k β Finset.Ico 1 (n + 1), a ^ k * βp.rightInv i x kβ β€ ββi.symmβ * a + ββi.symmβ * C * β k β Finset.Ico 2 (n + 1), (r * β j β Finset.Ico 1 n, a ^ j * βp.rightInv i x jβ) ^ k - FormalMultilinearSeries.leftInv.eq_def π Mathlib.Analysis.Analytic.Inverse
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] (p : FormalMultilinearSeries π E F) (i : E βL[π] F) (x : E) (xβ : β) : p.leftInv i x xβ = match xβ with | 0 => ContinuousMultilinearMap.uncurry0 π F x | 1 => (continuousMultilinearCurryFin1 π F E).symm βi.symm | n.succ.succ => -β c, ContinuousMultilinearMap.compAlongComposition (p.compContinuousLinearMap βi.symm) (βc) (p.leftInv i x (βc).length) - fderiv_fun_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} (h : β i β u, DifferentiableAt π (A i) x) : fderiv π (fun y => β i β u, A i y) x = β i β u, fderiv π (A i) x - fderiv_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} (h : β i β u, DifferentiableAt π (A i) x) : fderiv π (β i β u, A i) x = β i β u, fderiv π (A i) x - HasFDerivAt.fun_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivAt (A i) (A' i) x) : HasFDerivAt (fun y => β i β u, A i y) (β i β u, A' i) x - HasStrictFDerivAt.fun_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasStrictFDerivAt (A i) (A' i) x) : HasStrictFDerivAt (fun y => β i β u, A i y) (β i β u, A' i) x - HasFDerivAt.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivAt (A i) (A' i) x) : HasFDerivAt (β i β u, A i) (β i β u, A' i) x - HasFDerivAtFilter.fun_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {L : Filter E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivAtFilter (A i) (A' i) x L) : HasFDerivAtFilter (fun y => β i β u, A i y) (β i β u, A' i) x L - HasFDerivWithinAt.fun_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {s : Set E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivWithinAt (A i) (A' i) s x) : HasFDerivWithinAt (fun y => β i β u, A i y) (β i β u, A' i) s x - HasStrictFDerivAt.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasStrictFDerivAt (A i) (A' i) x) : HasStrictFDerivAt (β i β u, A i) (β i β u, A' i) x - HasFDerivAtFilter.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {L : Filter E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivAtFilter (A i) (A' i) x L) : HasFDerivAtFilter (β i β u, A i) (β i β u, A' i) x L - HasFDerivWithinAt.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {s : Set E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivWithinAt (A i) (A' i) s x) : HasFDerivWithinAt (β i β u, A i) (β i β u, A' i) s x - fderivWithin_fun_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {s : Set E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} (hxs : UniqueDiffWithinAt π s x) (h : β i β u, DifferentiableWithinAt π (A i) s x) : fderivWithin π (fun y => β i β u, A i y) s x = β i β u, fderivWithin π (A i) s x - fderivWithin_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {s : Set E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} (hxs : UniqueDiffWithinAt π s x) (h : β i β u, DifferentiableWithinAt π (A i) s x) : fderivWithin π (β i β u, A i) s x = β i β u, fderivWithin π (A i) s x - HasFDerivAt.multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [Fintype ΞΉ] (f : ContinuousMultilinearMap π E F) [DecidableEq ΞΉ] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {g : (i : ΞΉ) β G β E i} {g' : (i : ΞΉ) β G βL[π] E i} {x : G} (hg : β (i : ΞΉ), HasFDerivAt (g i) (g' i) x) : HasFDerivAt (fun x => f fun i => g i x) (β i, (f.toContinuousLinearMap (fun j => g j x) i).comp (g' i)) x - HasFDerivWithinAt.multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [Fintype ΞΉ] (f : ContinuousMultilinearMap π E F) [DecidableEq ΞΉ] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {g : (i : ΞΉ) β G β E i} {g' : (i : ΞΉ) β G βL[π] E i} {s : Set G} {x : G} (hg : β (i : ΞΉ), HasFDerivWithinAt (g i) (g' i) s x) : HasFDerivWithinAt (fun x => f fun i => g i x) (β i, (f.toContinuousLinearMap (fun j => g j x) i).comp (g' i)) s x - ContinuousMultilinearMap.iteratedFDeriv.eq_1 π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u} {ΞΉ : Type v} {Eβ : ΞΉ β Type wEβ} {G : Type wG} [NontriviallyNormedField π] [(i : ΞΉ) β SeminormedAddCommGroup (Eβ i)] [(i : ΞΉ) β NormedSpace π (Eβ i)] [SeminormedAddCommGroup G] [NormedSpace π G] [Fintype ΞΉ] (f : ContinuousMultilinearMap π Eβ G) (k : β) (x : (i : ΞΉ) β Eβ i) : f.iteratedFDeriv k x = β e, (f.iteratedFDerivComponent e.toEquivRange) ((Pi.compRightL π Eβ Subtype.val) x) - HasFDerivAt.continuousMultilinearMap_apply π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [Fintype ΞΉ] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] [DecidableEq ΞΉ] {x : G} {f : G β ContinuousMultilinearMap π E F} {g : (i : ΞΉ) β G β E i} {f' : G βL[π] ContinuousMultilinearMap π E F} {g' : (i : ΞΉ) β G βL[π] E i} (hf : HasFDerivAt f f' x) (hg : β (i : ΞΉ), HasFDerivAt (g i) (g' i) x) : HasFDerivAt (fun x => (f x) fun x_1 => g x_1 x) ((ContinuousMultilinearMap.apply π E F fun x_1 => g x_1 x).comp f' + β i, ((f x).toContinuousLinearMap (fun x_1 => g x_1 x) i).comp (g' i)) x - HasStrictFDerivAt.continuousMultilinearMap_apply π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [Fintype ΞΉ] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] [DecidableEq ΞΉ] {x : G} {f : G β ContinuousMultilinearMap π E F} {g : (i : ΞΉ) β G β E i} {f' : G βL[π] ContinuousMultilinearMap π E F} {g' : (i : ΞΉ) β G βL[π] E i} (hf : HasStrictFDerivAt f f' x) (hg : β (i : ΞΉ), HasStrictFDerivAt (g i) (g' i) x) : HasStrictFDerivAt (fun x => (f x) fun x_1 => g x_1 x) ((ContinuousMultilinearMap.apply π E F fun x_1 => g x_1 x).comp f' + β i, ((f x).toContinuousLinearMap (fun x_1 => g x_1 x) i).comp (g' i)) x - HasFDerivWithinAt.continuousMultilinearMap_apply π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [Fintype ΞΉ] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] [DecidableEq ΞΉ] {s : Set G} {x : G} {f : G β ContinuousMultilinearMap π E F} {g : (i : ΞΉ) β G β E i} {f' : G βL[π] ContinuousMultilinearMap π E F} {g' : (i : ΞΉ) β G βL[π] E i} (hf : HasFDerivWithinAt f f' s x) (hg : β (i : ΞΉ), HasFDerivWithinAt (g i) (g' i) s x) : HasFDerivWithinAt (fun x => (f x) fun x_1 => g x_1 x) ((ContinuousMultilinearMap.apply π E F fun x_1 => g x_1 x).comp f' + β i, ((f x).toContinuousLinearMap (fun x_1 => g x_1 x) i).comp (g' i)) s x - HasFDerivAt.linear_multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {G : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (G i)] [(i : ΞΉ) β NormedSpace π (G i)] [Fintype ΞΉ] {H : Type u_4} [NormedAddCommGroup H] [NormedSpace π H] [DecidableEq ΞΉ] {a : H β E} {a' : H βL[π] E} {b : (i : ΞΉ) β H β G i} {b' : (i : ΞΉ) β H βL[π] G i} {x : H} (ha : HasFDerivAt a a' x) (hb : β (i : ΞΉ), HasFDerivAt (b i) (b' i) x) (f : E βL[π] ContinuousMultilinearMap π G F) : HasFDerivAt (fun y => (f (a y)) fun i => b i y) ((f.flipMultilinear fun i => b i x).comp a' + β i, ((f (a x)).toContinuousLinearMap (fun j => b j x) i).comp (b' i)) x - HasFDerivWithinAt.linear_multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {G : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (G i)] [(i : ΞΉ) β NormedSpace π (G i)] [Fintype ΞΉ] {H : Type u_4} [NormedAddCommGroup H] [NormedSpace π H] [DecidableEq ΞΉ] {a : H β E} {a' : H βL[π] E} {b : (i : ΞΉ) β H β G i} {b' : (i : ΞΉ) β H βL[π] G i} {s : Set H} {x : H} (ha : HasFDerivWithinAt a a' s x) (hb : β (i : ΞΉ), HasFDerivWithinAt (b i) (b' i) s x) (f : E βL[π] ContinuousMultilinearMap π G F) : HasFDerivWithinAt (fun y => (f (a y)) fun i => b i y) ((f.flipMultilinear fun i => b i x).comp a' + β i, ((f (a x)).toContinuousLinearMap (fun j => b j x) i).comp (b' i)) s x - ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {G : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (G i)] [(i : ΞΉ) β NormedSpace π (G i)] [Fintype ΞΉ] [DecidableEq ΞΉ] (f : E βL[π] ContinuousMultilinearMap π G F) (v : E Γ ((i : ΞΉ) β G i)) : HasFDerivAt (fun p => (f p.1) p.2) ((f.flipMultilinear v.2).comp (ContinuousLinearMap.fst π E ((i : ΞΉ) β G i)) + β i, ((f v.1).toContinuousLinearMap v.2 i).comp ((ContinuousLinearMap.proj i).comp (ContinuousLinearMap.snd π E ((i : ΞΉ) β G i)))) v - fderiv_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, DifferentiableAt π (g i) x) : fderiv π (fun x => β i β u, g i x) x = β i β u, (β j β u.erase i, g j x) β’ fderiv π (g i) x - fderivWithin_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} [DecidableEq ΞΉ] {x : E} (hxs : UniqueDiffWithinAt π s x) (hg : β i β u, DifferentiableWithinAt π (g i) s x) : fderivWithin π (fun x => β i β u, g i x) s x = β i β u, (β j β u.erase i, g j x) β’ fderivWithin π (g i) s x - HasFDerivAt.finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} {g' : ΞΉ β E βL[π] πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, HasFDerivAt (g i) (g' i) x) : HasFDerivAt (fun x => β i β u, g i x) (β i β u, (β j β u.erase i, g j x) β’ g' i) x - HasStrictFDerivAt.finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} {g' : ΞΉ β E βL[π] πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, HasStrictFDerivAt (g i) (g' i) x) : HasStrictFDerivAt (fun x => β i β u, g i x) (β i β u, (β j β u.erase i, g j x) β’ g' i) x - HasFDerivWithinAt.finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} {g' : ΞΉ β E βL[π] πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, HasFDerivWithinAt (g i) (g' i) s x) : HasFDerivWithinAt (fun x => β i β u, g i x) (β i β u, (β j β u.erase i, g j x) β’ g' i) s x - hasFDerivAt_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} [DecidableEq ΞΉ] [Fintype ΞΉ] {x : ΞΉ β πΈ'} : HasFDerivAt (fun x => β i β u, x i) (β i β u, (β j β u.erase i, x j) β’ ContinuousLinearMap.proj i) x - hasStrictFDerivAt_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} [DecidableEq ΞΉ] [Fintype ΞΉ] {x : ΞΉ β πΈ'} : HasStrictFDerivAt (fun x => β i β u, x i) (β i β u, (β j β u.erase i, x j) β’ ContinuousLinearMap.proj i) x - fderiv_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {l : List ΞΉ} {x : E} (h : β i β l, DifferentiableAt π (fun x => f i x) x) : fderiv π (fun x => (List.map (fun x_1 => f x_1 x) l).prod) x = β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ fderiv π (fun x => f l[i] x) x - fderivWithin_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {l : List ΞΉ} {x : E} (hxs : UniqueDiffWithinAt π s x) (h : β i β l, DifferentiableWithinAt π (fun x => f i x) s x) : fderivWithin π (fun x => (List.map (fun x_1 => f x_1 x) l).prod) s x = β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ fderivWithin π (fun x => f l[i] x) s x - HasFDerivAt.list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {f' : ΞΉ β E βL[π] πΈ} {l : List ΞΉ} {x : E} (h : β i β l, HasFDerivAt (fun x => f i x) (f' i) x) : HasFDerivAt (fun x => (List.map (fun x_1 => f x_1 x) l).prod) (β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ f' l[i]) x - HasStrictFDerivAt.list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {f' : ΞΉ β E βL[π] πΈ} {l : List ΞΉ} {x : E} (h : β i β l, HasStrictFDerivAt (fun x => f i x) (f' i) x) : HasStrictFDerivAt (fun x => (List.map (fun x_1 => f x_1 x) l).prod) (β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ f' l[i]) x - HasFDerivWithinAt.list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {f' : ΞΉ β E βL[π] πΈ} {l : List ΞΉ} {x : E} (h : β i β l, HasFDerivWithinAt (fun x => f i x) (f' i) s x) : HasFDerivWithinAt (fun x => (List.map (fun x_1 => f x_1 x) l).prod) (β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ f' l[i]) s x - hasStrictFDerivAt_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] [Fintype ΞΉ] {l : List ΞΉ} {x : ΞΉ β πΈ} : HasStrictFDerivAt (fun x => (List.map x l).prod) (β i, (List.map x (List.take (βi) l)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l)).prod β’ ContinuousLinearMap.proj l[i]) x - hasFDerivAt_list_prod_finRange' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {n : β} {x : Fin n β πΈ} : HasFDerivAt (fun x => (List.map x (List.finRange n)).prod) (β i, (List.map x (List.take (βi) (List.finRange n))).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ (List.finRange n))).prod β’ ContinuousLinearMap.proj i) x - hasStrictFDerivAt_list_prod_finRange' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {n : β} {x : Fin n β πΈ} : HasStrictFDerivAt (fun x => (List.map x (List.finRange n)).prod) (β i, (List.map x (List.take (βi) (List.finRange n))).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ (List.finRange n))).prod β’ ContinuousLinearMap.proj i) x - hasFDerivAt_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] [Fintype ΞΉ] {l : List ΞΉ} {x : ΞΉ β πΈ'} : HasFDerivAt (fun x => (List.map x l).prod) (β i, (List.map x (List.take (βi) l)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l)).prod β’ ContinuousLinearMap.proj l[i]) x - hasFDerivAt_list_prod_attach' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {l : List ΞΉ} {x : { i // i β l } β πΈ} : HasFDerivAt (fun x => (List.map x l.attach).prod) (β i, (List.map x (List.take (βi) l.attach)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l.attach)).prod β’ ContinuousLinearMap.proj l.attach[Fin.cast β― i]) x - hasStrictFDerivAt_list_prod_attach' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {l : List ΞΉ} {x : { i // i β l } β πΈ} : HasStrictFDerivAt (fun x => (List.map x l.attach).prod) (β i, (List.map x (List.take (βi) l.attach)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l.attach)).prod β’ ContinuousLinearMap.proj l.attach[Fin.cast β― i]) x - fderiv_fun_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {x : E} (n : β) (hf : DifferentiableAt π f x) : fderiv π (fun x => f x ^ n) x = β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ fderiv π f x - fderiv_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {x : E} (n : β) (hf : DifferentiableAt π f x) : fderiv π (f ^ n) x = β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ fderiv π f x - fderivWithin_fun_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {x : E} {s : Set E} (hxs : UniqueDiffWithinAt π s x) (n : β) (hf : DifferentiableWithinAt π f s x) : fderivWithin π (fun x => f x ^ n) s x = β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ fderivWithin π f s x - fderivWithin_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {x : E} {s : Set E} (hxs : UniqueDiffWithinAt π s x) (n : β) (hf : DifferentiableWithinAt π f s x) : fderivWithin π (f ^ n) s x = β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ fderivWithin π f s x - fderiv_pow_ring' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAlgebra π πΈ] {x : πΈ} (n : β) : fderiv π (fun x => x ^ n) x = β i β Finset.range n, MulOpposite.op (x ^ i) β’ x ^ (n.pred - i) β’ ContinuousLinearMap.id π πΈ - fderivWithin_pow_ring' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAlgebra π πΈ] {s : Set πΈ} {x : πΈ} (n : β) (hxs : UniqueDiffWithinAt π s x) : fderivWithin π (fun x => x ^ n) s x = β i β Finset.range n, MulOpposite.op (x ^ i) β’ x ^ (n.pred - i) β’ ContinuousLinearMap.id π πΈ - hasFDerivAt_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAlgebra π πΈ] (n : β) {x : πΈ} : HasFDerivAt (fun x => x ^ n) (β i β Finset.range n, MulOpposite.op (x ^ i) β’ x ^ (n.pred - i) β’ ContinuousLinearMap.id π πΈ) x - hasStrictFDerivAt_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAlgebra π πΈ] (n : β) {x : πΈ} : HasStrictFDerivAt (fun x => x ^ n) (β i β Finset.range n, MulOpposite.op (x ^ i) β’ x ^ (n.pred - i) β’ ContinuousLinearMap.id π πΈ) x - hasFDerivWithinAt_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAlgebra π πΈ] (n : β) {x : πΈ} {s : Set πΈ} : HasFDerivWithinAt (fun x => x ^ n) (β i β Finset.range n, MulOpposite.op (x ^ i) β’ x ^ (n.pred - i) β’ ContinuousLinearMap.id π πΈ) s x - HasFDerivAt.fun_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {f' : E βL[π] πΈ} {x : E} (h : HasFDerivAt f f' x) (n : β) : HasFDerivAt (fun x => f x ^ n) (β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ f') x - HasStrictFDerivAt.fun_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {f' : E βL[π] πΈ} {x : E} (h : HasStrictFDerivAt f f' x) (n : β) : HasStrictFDerivAt (fun x => f x ^ n) (β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ f') x - HasFDerivWithinAt.fun_pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {f' : E βL[π] πΈ} {x : E} {s : Set E} (h : HasFDerivWithinAt f f' s x) (n : β) : HasFDerivWithinAt (fun x => f x ^ n) (β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ f') s x - HasFDerivAt.pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {f' : E βL[π] πΈ} {x : E} (h : HasFDerivAt f f' x) (n : β) : HasFDerivAt (f ^ n) (β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ f') x - HasStrictFDerivAt.pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {f' : E βL[π] πΈ} {x : E} (h : HasStrictFDerivAt f f' x) (n : β) : HasStrictFDerivAt (f ^ n) (β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ f') x - HasFDerivWithinAt.pow' π Mathlib.Analysis.Calculus.FDeriv.Pow
{π : Type u_1} {πΈ : Type u_2} {E : Type u_3} [NontriviallyNormedField π] [NormedRing πΈ] [NormedAddCommGroup E] [NormedAlgebra π πΈ] [NormedSpace π E] {f : E β πΈ} {f' : E βL[π] πΈ} {x : E} {s : Set E} (h : HasFDerivWithinAt f f' s x) (n : β) : HasFDerivWithinAt (f ^ n) (β i β Finset.range n, MulOpposite.op (f x ^ i) β’ f x ^ (n.pred - i) β’ f') s x - BoxIntegral.hasIntegral_GP_divergence_of_forall_hasDerivWithinAt π Mathlib.Analysis.BoxIntegral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} [CompleteSpace E] (I : BoxIntegral.Box (Fin (n + 1))) (f : (Fin (n + 1) β β) β Fin (n + 1) β E) (f' : (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] Fin (n + 1) β E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hs : β x β s, ContinuousWithinAt f (BoxIntegral.Box.Icc I) x) (Hd : β x β BoxIntegral.Box.Icc I \ s, HasFDerivWithinAt f (f' x) (BoxIntegral.Box.Icc I) x) : BoxIntegral.HasIntegral I BoxIntegral.IntegrationParams.GP (fun x => β i, (f' x) (Pi.single i 1) i) BoxIntegral.BoxAdditiveMap.volume (β i, (BoxIntegral.integral (I.face i) BoxIntegral.IntegrationParams.GP (fun x => f (i.insertNth (I.upper i) x) i) BoxIntegral.BoxAdditiveMap.volume - BoxIntegral.integral (I.face i) BoxIntegral.IntegrationParams.GP (fun x => f (i.insertNth (I.lower i) x) i) BoxIntegral.BoxAdditiveMap.volume)) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable' π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : Fin (n + 1) β (Fin (n + 1) β β) β E) (f' : Fin (n + 1) β (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' i x) (Pi.single i 1) = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (b i) x)) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable' π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : Fin (n + 1) β (Fin (n + 1) β β) β E) (f' : Fin (n + 1) β (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' i x) (Pi.single i 1) = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (b i) x)) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : (Fin (n + 1) β β) β Fin (n + 1) β E) (f' : (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] Fin (n + 1) β E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' x) (Pi.single i 1) i = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (b i) x) i) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : (Fin (n + 1) β β) β Fin (n + 1) β E) (f' : (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] Fin (n + 1) β E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' x) (Pi.single i 1) i = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (b i) x) i) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable_of_equiv π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace β F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F βL[β] Fin (n + 1) β β) (he_ord : β (x y : F), eL x β€ eL y β x β€ y) (he_vol : MeasureTheory.MeasurePreserving (βeL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) β F β E) (f' : Fin (n + 1) β F β F βL[β] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a β€ b) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β interior (Set.Icc a b) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F β E) (hDF : β (x : F), DF x = β i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : β« (x : F) in Set.Icc a b, DF x = β i, ((β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable_of_equiv π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace β F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F βL[β] Fin (n + 1) β β) (he_ord : β (x y : F), eL x β€ eL y β x β€ y) (he_vol : MeasureTheory.MeasurePreserving (βeL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) β F β E) (f' : Fin (n + 1) β F β F βL[β] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a β€ b) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β interior (Set.Icc a b) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F β E) (hDF : β (x : F), DF x = β i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : β« (x : F) in Set.Icc a b, DF x = β i, ((β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - CStarMatrix.toCLM_apply_eq_sum π Mathlib.Analysis.CStarAlgebra.CStarMatrix
{m : Type u_1} {n : Type u_2} {A : Type u_5} [Fintype m] [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {M : CStarMatrix m n A} {v : WithCStarModule A (m β A)} : (CStarMatrix.toCLM M) v = (WithCStarModule.equiv A (n β A)).symm fun j => β i, v i * M i j - norm_iteratedFDeriv_clm_apply π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] {f : E β F βL[π] G} {g : E β F} {N : WithTop ββ} {n : β} (hf : ContDiff π N f) (hg : ContDiff π N g) (x : E) (hn : βn β€ N) : βiteratedFDeriv π n (fun y => (f y) (g y)) xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDeriv π i f xβ * βiteratedFDeriv π (n - i) g xβ - norm_iteratedFDerivWithin_clm_apply π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] {f : E β F βL[π] G} {g : E β F} {s : Set E} {x : E} {N : WithTop ββ} {n : β} (hf : ContDiffOn π N f s) (hg : ContDiffOn π N g s) (hs : UniqueDiffOn π s) (hx : x β s) (hn : βn β€ N) : βiteratedFDerivWithin π n (fun y => (f y) (g y)) s xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} (hf : ContDiff π N f) (hg : ContDiff π N g) (x : D) {n : β} (hn : βn β€ N) : βiteratedFDeriv π n (fun y => (B (f y)) (g y)) xβ β€ βBβ * β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDeriv π i f xβ * βiteratedFDeriv π (n - i) g xβ - ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear_of_le_one π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} (hf : ContDiff π N f) (hg : ContDiff π N g) (x : D) {n : β} (hn : βn β€ N) (hB : βBβ β€ 1) : βiteratedFDeriv π n (fun y => (B (f y)) (g y)) xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDeriv π i f xβ * βiteratedFDeriv π (n - i) g xβ - ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_aux π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {Du Eu Fu Gu : Type u} [NormedAddCommGroup Du] [NormedSpace π Du] [NormedAddCommGroup Eu] [NormedSpace π Eu] [NormedAddCommGroup Fu] [NormedSpace π Fu] [NormedAddCommGroup Gu] [NormedSpace π Gu] (B : Eu βL[π] Fu βL[π] Gu) {f : Du β Eu} {g : Du β Fu} {n : β} {s : Set Du} {x : Du} (hf : ContDiffOn π (βn) f s) (hg : ContDiffOn π (βn) g s) (hs : UniqueDiffOn π s) (hx : x β s) : βiteratedFDerivWithin π n (fun y => (B (f y)) (g y)) s xβ β€ βBβ * β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} {s : Set D} {x : D} (hf : ContDiffOn π N f s) (hg : ContDiffOn π N g s) (hs : UniqueDiffOn π s) (hx : x β s) {n : β} (hn : βn β€ N) : βiteratedFDerivWithin π n (fun y => (B (f y)) (g y)) s xβ β€ βBβ * β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_of_le_one π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} {s : Set D} {x : D} (hf : ContDiffOn π N f s) (hg : ContDiffOn π N g s) (hs : UniqueDiffOn π s) (hx : x β s) {n : β} (hn : βn β€ N) (hB : βBβ β€ 1) : βiteratedFDerivWithin π n (fun y => (B (f y)) (g y)) s xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - ContinuousAlternatingMap.alternatizeUncurryFin_apply π Mathlib.Analysis.Normed.Module.Alternating.Uncurry.Fin
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {n : β} (f : E βL[π] E [β^Fin n]βL[π] F) (v : Fin (n + 1) β E) : (ContinuousAlternatingMap.alternatizeUncurryFin f) v = β i, (-1) ^ βi β’ (f (v i)) (i.removeNth v) - extDeriv_apply π Mathlib.Analysis.Calculus.DifferentialForm.Basic
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {n : β} {Ο : E β E [β^Fin n]βL[π] F} {x : E} (h : DifferentiableAt π Ο x) (v : Fin (n + 1) β E) : (extDeriv Ο x) v = β i, (-1) ^ βi β’ (fderiv π (fun x => (Ο x) (i.removeNth v)) x) (v i) - extDerivWithin_apply π Mathlib.Analysis.Calculus.DifferentialForm.Basic
{π : Type u_1} {E : Type u_2} {F : Type u_3} [NontriviallyNormedField π] [NormedAddCommGroup E] [NormedSpace π E] [NormedAddCommGroup F] [NormedSpace π F] {n : β} {Ο : E β E [β^Fin n]βL[π] F} {s : Set E} {x : E} (h : DifferentiableWithinAt π Ο s x) (hs : UniqueDiffWithinAt π s x) (v : Fin (n + 1) β E) : (extDerivWithin Ο s x) v = β i, (-1) ^ βi β’ (fderivWithin π (fun x => (Ο x) (i.removeNth v)) s x) (v i) - VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le π Mathlib.Analysis.Fourier.FourierTransformDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_2} {W : Type u_3} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) {f : V β E} [MeasurableSpace V] [BorelSpace V] [FiniteDimensional β V] {ΞΌ : MeasureTheory.Measure V} [ΞΌ.IsAddHaarMeasure] {K N : ββ} (hf : ContDiff β (βN) f) (h'f : β (k n : β), βk β€ K β βn β€ N β MeasureTheory.Integrable (fun v => βvβ ^ k * βiteratedFDeriv β n f vβ) ΞΌ) {k n : β} (hk : βk β€ K) (hn : βn β€ N) (v : V) (w : W) : |(L v) w| ^ n * βiteratedFDeriv β k (VectorFourier.fourierIntegral Real.fourierChar ΞΌ L.toLinearMapββ f) wβ β€ βvβ ^ n * (2 * Real.pi * βLβ) ^ k * (2 * βk + 2) ^ n * β p β Finset.range (k + 1) ΓΛ’ Finset.range (n + 1), β« (v : V), βvβ ^ p.1 * βiteratedFDeriv β p.2 f vβ βΞΌ - VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le π Mathlib.Analysis.Fourier.FourierTransformDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_2} {W : Type u_3} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) {f : V β E} [MeasurableSpace V] [BorelSpace V] [FiniteDimensional β V] {ΞΌ : MeasureTheory.Measure V} [ΞΌ.IsAddHaarMeasure] {K N : ββ} (hf : ContDiff β (βN) f) (h'f : β (k n : β), βk β€ K β βn β€ N β MeasureTheory.Integrable (fun v => βvβ ^ k * βiteratedFDeriv β n f vβ) ΞΌ) {k n : β} (hk : βk β€ K) (hn : βn β€ N) {w : W} : βVectorFourier.fourierPowSMulRight (-L.flip) (iteratedFDeriv β k (VectorFourier.fourierIntegral Real.fourierChar ΞΌ L.toLinearMapββ f)) w nβ β€ (2 * Real.pi) ^ k * (2 * βk + 2) ^ n * βLβ ^ k * β p β Finset.range (k + 1) ΓΛ’ Finset.range (n + 1), β« (v : V), βvβ ^ p.1 * βiteratedFDeriv β p.2 f vβ βΞΌ - ProbabilityTheory.covarianceBilin_apply_pi π Mathlib.Probability.Moments.CovarianceBilin
{ΞΉ : Type u_2} {Ξ© : Type u_3} [Fintype ΞΉ] {mΞ© : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} [MeasureTheory.IsFiniteMeasure ΞΌ] {X : ΞΉ β Ξ© β β} (hX : β (i : ΞΉ), MeasureTheory.MemLp (X i) 2 ΞΌ) (x y : EuclideanSpace β ΞΉ) : ((ProbabilityTheory.covarianceBilin (MeasureTheory.Measure.map (fun Ο => WithLp.toLp 2 fun x => X x Ο) ΞΌ)) x) y = β i, β j, x.ofLp i * y.ofLp j * ProbabilityTheory.covariance (X i) (X j) ΞΌ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?bBy main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβandβ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 0ac13cd serving mathlib revision 7a854fc