Loogle!
Result
Found 81 declarations mentioning ContinuousLinearMap and Finset.sum.
- ContinuousLinearMap.coe_sum π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [ContinuousAdd Mβ] {ΞΉ : Type u_9} (t : Finset ΞΉ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) : β(β d β t, f d) = β d β t, β(f d) - ContinuousLinearMap.sum_apply π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [ContinuousAdd Mβ] {ΞΉ : Type u_9} (t : Finset ΞΉ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) (b : Mβ) : (β d β t, f d) b = β d β t, (f d) b - ContinuousLinearMap.coe_sum' π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [ContinuousAdd Mβ] {ΞΉ : Type u_9} (t : Finset ΞΉ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) : β(β d β t, f d) = β d β t, β(f d) - ContinuousLinearMap.finset_sum_comp π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} {Rβ : Type u_3} [Semiring Rβ] [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_7} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [RingHomCompTriple Οββ Οββ Οββ] {ΞΉ : Type u_9} {s : Finset ΞΉ} [ContinuousAdd Mβ] (g : ΞΉ β Mβ βSL[Οββ] Mβ) (f : Mβ βSL[Οββ] Mβ) : (β i β s, g i).comp f = β i β s, (g i).comp f - ContinuousLinearMap.comp_finset_sum π Mathlib.Topology.Algebra.Module.LinearMap
{Rβ : Type u_1} {Rβ : Type u_2} {Rβ : Type u_3} [Semiring Rβ] [Semiring Rβ] [Semiring Rβ] {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Οββ : Rβ β+* Rβ} {Mβ : Type u_4} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_6} [TopologicalSpace Mβ] [AddCommMonoid Mβ] {Mβ : Type u_7} [TopologicalSpace Mβ] [AddCommMonoid Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [Module Rβ Mβ] [RingHomCompTriple Οββ Οββ Οββ] {ΞΉ : Type u_9} {s : Finset ΞΉ} [ContinuousAdd Mβ] [ContinuousAdd Mβ] (g : Mβ βSL[Οββ] Mβ) (f : ΞΉ β Mβ βSL[Οββ] Mβ) : g.comp (β i β s, f i) = β i β s, g.comp (f i) - ContinuousMultilinearMap.linearDeriv_apply π Mathlib.Topology.Algebra.Module.Multilinear.Basic
{R : Type u} {ΞΉ : Type v} {Mβ : ΞΉ β Type wβ} {Mβ : Type wβ} [Semiring R] [(i : ΞΉ) β AddCommMonoid (Mβ i)] [AddCommMonoid Mβ] [(i : ΞΉ) β Module R (Mβ i)] [Module R Mβ] [(i : ΞΉ) β TopologicalSpace (Mβ i)] [TopologicalSpace Mβ] (f : ContinuousMultilinearMap R Mβ Mβ) [ContinuousAdd Mβ] [DecidableEq ΞΉ] [Fintype ΞΉ] (x y : (i : ΞΉ) β Mβ i) : (f.linearDeriv x) y = β i, f (Function.update x i (y i)) - Basis.constrL_apply π Mathlib.Topology.Algebra.Module.FiniteDimension
{π : Type u} [hnorm : NontriviallyNormedField π] {E : Type v} [AddCommGroup E] [Module π E] [TopologicalSpace E] [IsTopologicalAddGroup E] [ContinuousSMul π E] {F : Type w} [AddCommGroup F] [Module π F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul π F] [CompleteSpace π] [T2Space E] {ΞΉ : Type u_2} [Fintype ΞΉ] (v : Basis ΞΉ π E) (f : ΞΉ β F) (e : E) : (v.constrL f) e = β i, v.equivFun e i β’ f i - MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_opNorm π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] {m : MeasurableSpace Ξ±} (T : Set Ξ± β F' βL[β] F) (f : MeasureTheory.SimpleFunc Ξ± F') : βMeasureTheory.SimpleFunc.setToSimpleFunc T fβ β€ β x β f.range, βT (βf β»ΒΉ' {x})β * βxβ - MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} (T : Set Ξ± β F βL[β] F') {C : β} (hT_norm : β (s : Set Ξ±), MeasurableSet s β βT sβ β€ C * ΞΌ.real s) (f : MeasureTheory.SimpleFunc Ξ± F) : βMeasureTheory.SimpleFunc.setToSimpleFunc T fβ β€ C * β x β f.range, ΞΌ.real (βf β»ΒΉ' {x}) * βxβ - MeasureTheory.SimpleFunc.setToSimpleFunc.eq_1 π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] {xβ : MeasurableSpace Ξ±} (T : Set Ξ± β F βL[β] F') (f : MeasureTheory.SimpleFunc Ξ± F) : MeasureTheory.SimpleFunc.setToSimpleFunc T f = β x β f.range, (T (βf β»ΒΉ' {x})) x - MeasureTheory.SimpleFunc.norm_setToSimpleFunc_le_sum_mul_norm_of_integrable π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {E : Type u_2} {F' : Type u_4} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F'] [NormedSpace β F'] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} (T : Set Ξ± β E βL[β] F') {C : β} (hT_norm : β (s : Set Ξ±), MeasurableSet s β ΞΌ s < β€ β βT sβ β€ C * ΞΌ.real s) (f : MeasureTheory.SimpleFunc Ξ± E) (hf : MeasureTheory.Integrable (βf) ΞΌ) : βMeasureTheory.SimpleFunc.setToSimpleFunc T fβ β€ C * β x β f.range, ΞΌ.real (βf β»ΒΉ' {x}) * βxβ - MeasureTheory.SimpleFunc.setToSimpleFunc_eq_sum_filter π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] [DecidablePred fun x => x β 0] {m : MeasurableSpace Ξ±} (T : Set Ξ± β F βL[β] F') (f : MeasureTheory.SimpleFunc Ξ± F) : MeasureTheory.SimpleFunc.setToSimpleFunc T f = β x β f.range with x β 0, (T (βf β»ΒΉ' {x})) x - MeasureTheory.SimpleFunc.map_setToSimpleFunc π Mathlib.MeasureTheory.Integral.FinMeasAdditive
{Ξ± : Type u_1} {F : Type u_3} {F' : Type u_4} {G : Type u_5} [NormedAddCommGroup F] [NormedSpace β F] [NormedAddCommGroup F'] [NormedSpace β F'] [NormedAddCommGroup G] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} (T : Set Ξ± β F βL[β] F') (h_add : MeasureTheory.FinMeasAdditive ΞΌ T) {f : MeasureTheory.SimpleFunc Ξ± G} (hf : MeasureTheory.Integrable (βf) ΞΌ) {g : G β F} (hg : g 0 = 0) : MeasureTheory.SimpleFunc.setToSimpleFunc T (MeasureTheory.SimpleFunc.map g f) = β x β f.range, (T (βf β»ΒΉ' {x})) (g x) - MeasureTheory.setToFun_finset_sum π Mathlib.MeasureTheory.Integral.SetToL1
{Ξ± : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} [CompleteSpace F] {T : Set Ξ± β E βL[β] F} {C : β} (hT : MeasureTheory.DominatedFinMeasAdditive ΞΌ T C) {ΞΉ : Type u_7} (s : Finset ΞΉ) {f : ΞΉ β Ξ± β E} (hf : β i β s, MeasureTheory.Integrable (f i) ΞΌ) : (MeasureTheory.setToFun ΞΌ T hT fun a => β i β s, f i a) = β i β s, MeasureTheory.setToFun ΞΌ T hT (f i) - MeasureTheory.setToFun_finset_sum' π Mathlib.MeasureTheory.Integral.SetToL1
{Ξ± : Type u_1} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {m : MeasurableSpace Ξ±} {ΞΌ : MeasureTheory.Measure Ξ±} [CompleteSpace F] {T : Set Ξ± β E βL[β] F} {C : β} (hT : MeasureTheory.DominatedFinMeasAdditive ΞΌ T C) {ΞΉ : Type u_7} (s : Finset ΞΉ) {f : ΞΉ β Ξ± β E} (hf : β i β s, MeasureTheory.Integrable (f i) ΞΌ) : MeasureTheory.setToFun ΞΌ T hT (β i β s, f i) = β i β s, MeasureTheory.setToFun ΞΌ T hT (f i) - OrthogonalFamily.sum_projection_of_mem_iSup π Mathlib.Analysis.InnerProductSpace.Projection
{π : Type u_1} {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_4} [Fintype ΞΉ] {V : ΞΉ β Submodule π E} [β (i : ΞΉ), CompleteSpace β₯(V i)] (hV : OrthogonalFamily π (fun i => β₯(V i)) fun i => (V i).subtypeβα΅’) (x : E) (hx : x β iSup V) : β i, β((V i).orthogonalProjection x) = x - OrthonormalBasis.orthogonalProjection_eq_sum π Mathlib.Analysis.InnerProductSpace.PiL2
{ΞΉ : Type u_1} {π : Type u_3} [RCLike π] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace π E] [Fintype ΞΉ] {U : Submodule π E} [CompleteSpace β₯U] (b : OrthonormalBasis ΞΉ π β₯U) (x : E) : U.orthogonalProjection x = β i, inner π (β(b i)) x β’ b i - BoxIntegral.integralSum_biUnionTagged π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) (Ο : BoxIntegral.Prepartition I) (Οi : (J : BoxIntegral.Box ΞΉ) β BoxIntegral.TaggedPrepartition J) : BoxIntegral.integralSum f vol (Ο.biUnionTagged Οi) = β J β Ο.boxes, BoxIntegral.integralSum f vol (Οi J) - BoxIntegral.integralSum_fiberwise π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ξ± : Type u_1} (g : BoxIntegral.Box ΞΉ β Ξ±) (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) (Ο : BoxIntegral.TaggedPrepartition I) : β y β Finset.image g Ο.boxes, BoxIntegral.integralSum f vol (Ο.filter fun x => g x = y) = BoxIntegral.integralSum f vol Ο - BoxIntegral.HasIntegral.sum π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {Ξ± : Type u_1} {s : Finset Ξ±} {f : Ξ± β (ΞΉ β β) β E} {g : Ξ± β F} (h : β i β s, BoxIntegral.HasIntegral I l (f i) vol (g i)) : BoxIntegral.HasIntegral I l (fun x => β i β s, f i x) vol (β i β s, g i) - BoxIntegral.Integrable.tendsto_integralSum_sum_integral π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (Οβ : BoxIntegral.Prepartition I) : Filter.Tendsto (BoxIntegral.integralSum f vol) (BoxIntegral.IntegrationParams.toFilteriUnion I Οβ) (nhds (β J β Οβ.boxes, BoxIntegral.integral J l f vol)) - BoxIntegral.Integrable.sum_integral_congr π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) {Οβ Οβ : BoxIntegral.Prepartition I} (hU : Οβ.iUnion = Οβ.iUnion) : β J β Οβ.boxes, BoxIntegral.integral J l f vol = β J β Οβ.boxes, BoxIntegral.integral J l f vol - BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.TaggedPrepartition I} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {c : NNReal} {Ξ΅ : β} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (h0 : 0 < Ξ΅) (hΟ : l.MemBaseSet I c (h.convergenceR Ξ΅ c) Ο) : dist (BoxIntegral.integralSum f vol Ο) (β J β Ο.boxes, BoxIntegral.integral J l f vol) β€ Ξ΅ - BoxIntegral.Integrable.dist_integralSum_sum_integral_le_of_memBaseSet_of_iUnion_eq π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} {Ο : BoxIntegral.TaggedPrepartition I} [Fintype ΞΉ] {l : BoxIntegral.IntegrationParams} {f : (ΞΉ β β) β E} {vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€} {c : NNReal} {Ξ΅ : β} [CompleteSpace F] (h : BoxIntegral.Integrable I l f vol) (h0 : 0 < Ξ΅) (hΟ : l.MemBaseSet I c (h.convergenceR Ξ΅ c) Ο) {Οβ : BoxIntegral.Prepartition I} (hU : Ο.iUnion = Οβ.iUnion) : dist (BoxIntegral.integralSum f vol Ο) (β J β Οβ.boxes, BoxIntegral.integral J l f vol) β€ Ξ΅ - BoxIntegral.integralSum.eq_1 π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) (Ο : BoxIntegral.TaggedPrepartition I) : BoxIntegral.integralSum f vol Ο = β J β Ο.boxes, (vol J) (f (Ο.tag J)) - BoxIntegral.integralSum_sub_partitions π Mathlib.Analysis.BoxIntegral.Basic
{ΞΉ : Type u} {E : Type v} {F : Type w} [NormedAddCommGroup E] [NormedSpace β E] [NormedAddCommGroup F] [NormedSpace β F] {I : BoxIntegral.Box ΞΉ} (f : (ΞΉ β β) β E) (vol : BoxIntegral.BoxAdditiveMap ΞΉ (E βL[β] F) β€) {Οβ Οβ : BoxIntegral.TaggedPrepartition I} (hβ : Οβ.IsPartition) (hβ : Οβ.IsPartition) : BoxIntegral.integralSum f vol Οβ - BoxIntegral.integralSum f vol Οβ = β J β (Οβ.toPrepartition β Οβ.toPrepartition).boxes, ((vol J) (f ((Οβ.infPrepartition Οβ.toPrepartition).tag J)) - (vol J) (f ((Οβ.infPrepartition Οβ.toPrepartition).tag J))) - gramSchmidt.eq_1 π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : gramSchmidt π f n = f n - β i, β((Submodule.span π {gramSchmidt π f βi}).orthogonalProjection (f n)) - gramSchmidt.eq_def π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : gramSchmidt π f n = f n - β i, β((Submodule.span π {gramSchmidt π f βi}).orthogonalProjection (f n)) - gramSchmidt_def π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : gramSchmidt π f n = f n - β i β Finset.Iio n, β((Submodule.span π {gramSchmidt π f i}).orthogonalProjection (f n)) - gramSchmidt_def' π Mathlib.Analysis.InnerProductSpace.GramSchmidtOrtho
(π : Type u_1) {E : Type u_2} [RCLike π] [NormedAddCommGroup E] [InnerProductSpace π E] {ΞΉ : Type u_3} [LinearOrder ΞΉ] [LocallyFiniteOrderBot ΞΉ] [WellFoundedLT ΞΉ] (f : ΞΉ β E) (n : ΞΉ) : f n = gramSchmidt π f n + β i β Finset.Iio n, β((Submodule.span π {gramSchmidt π f i}).orthogonalProjection (f n)) - FormalMultilinearSeries.radius_rightInv_pos_of_radius_pos_aux2 π Mathlib.Analysis.Analytic.Inverse
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {n : β} (hn : 2 β€ n + 1) (p : FormalMultilinearSeries π E F) (i : E βL[π] F) {r a C : β} (hr : 0 β€ r) (ha : 0 β€ a) (hC : 0 β€ C) (hp : β (n : β), βp nβ β€ C * r ^ n) : β k β Finset.Ico 1 (n + 1), a ^ k * βp.rightInv i x kβ β€ ββi.symmβ * a + ββi.symmβ * C * β k β Finset.Ico 2 (n + 1), (r * β j β Finset.Ico 1 n, a ^ j * βp.rightInv i x jβ) ^ k - FormalMultilinearSeries.leftInv.eq_def π Mathlib.Analysis.Analytic.Inverse
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] (p : FormalMultilinearSeries π E F) (i : E βL[π] F) (x : E) (xβ : β) : p.leftInv i x xβ = match xβ with | 0 => ContinuousMultilinearMap.uncurry0 π F x | 1 => (continuousMultilinearCurryFin1 π F E).symm βi.symm | n.succ.succ => -β c, ContinuousMultilinearMap.compAlongComposition (p.compContinuousLinearMap βi.symm) (βc) (p.leftInv i x (βc).length) - HasFDerivAt.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivAt (A i) (A' i) x) : HasFDerivAt (fun y => β i β u, A i y) (β i β u, A' i) x - HasStrictFDerivAt.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasStrictFDerivAt (A i) (A' i) x) : HasStrictFDerivAt (fun y => β i β u, A i y) (β i β u, A' i) x - HasFDerivAtFilter.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {L : Filter E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivAtFilter (A i) (A' i) x L) : HasFDerivAtFilter (fun y => β i β u, A i y) (β i β u, A' i) x L - HasFDerivWithinAt.sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {s : Set E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} {A' : ΞΉ β E βL[π] F} (h : β i β u, HasFDerivWithinAt (A i) (A' i) s x) : HasFDerivWithinAt (fun y => β i β u, A i y) (β i β u, A' i) s x - fderiv_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} (h : β i β u, DifferentiableAt π (A i) x) : fderiv π (fun y => β i β u, A i y) x = β i β u, fderiv π (A i) x - fderivWithin_sum π Mathlib.Analysis.Calculus.FDeriv.Add
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace π F] {x : E} {s : Set E} {ΞΉ : Type u_4} {u : Finset ΞΉ} {A : ΞΉ β E β F} (hxs : UniqueDiffWithinAt π s x) (h : β i β u, DifferentiableWithinAt π (A i) s x) : fderivWithin π (fun y => β i β u, A i y) s x = β i β u, fderivWithin π (A i) s x - ContinuousMultilinearMap.linearDeriv.eq_1 π Mathlib.Analysis.Calculus.FDeriv.Analytic
{R : Type u} {ΞΉ : Type v} {Mβ : ΞΉ β Type wβ} {Mβ : Type wβ} [Semiring R] [(i : ΞΉ) β AddCommMonoid (Mβ i)] [AddCommMonoid Mβ] [(i : ΞΉ) β Module R (Mβ i)] [Module R Mβ] [(i : ΞΉ) β TopologicalSpace (Mβ i)] [TopologicalSpace Mβ] (f : ContinuousMultilinearMap R Mβ Mβ) [ContinuousAdd Mβ] [DecidableEq ΞΉ] [Fintype ΞΉ] (x : (i : ΞΉ) β Mβ i) : f.linearDeriv x = β i, (f.toContinuousLinearMap x i).comp (ContinuousLinearMap.proj i) - HasFDerivAt.multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [Fintype ΞΉ] (f : ContinuousMultilinearMap π E F) [DecidableEq ΞΉ] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {g : (i : ΞΉ) β G β E i} {g' : (i : ΞΉ) β G βL[π] E i} {x : G} (hg : β (i : ΞΉ), HasFDerivAt (g i) (g' i) x) : HasFDerivAt (fun x => f fun i => g i x) (β i, (f.toContinuousLinearMap (fun j => g j x) i).comp (g' i)) x - HasFDerivWithinAt.multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {E : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (E i)] [(i : ΞΉ) β NormedSpace π (E i)] [Fintype ΞΉ] (f : ContinuousMultilinearMap π E F) [DecidableEq ΞΉ] {G : Type u_4} [NormedAddCommGroup G] [NormedSpace π G] {g : (i : ΞΉ) β G β E i} {g' : (i : ΞΉ) β G βL[π] E i} {s : Set G} {x : G} (hg : β (i : ΞΉ), HasFDerivWithinAt (g i) (g' i) s x) : HasFDerivWithinAt (fun x => f fun i => g i x) (β i, (f.toContinuousLinearMap (fun j => g j x) i).comp (g' i)) s x - ContinuousMultilinearMap.iteratedFDeriv.eq_1 π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u} {ΞΉ : Type v} {Eβ : ΞΉ β Type wEβ} {G : Type wG} [NontriviallyNormedField π] [(i : ΞΉ) β SeminormedAddCommGroup (Eβ i)] [(i : ΞΉ) β NormedSpace π (Eβ i)] [SeminormedAddCommGroup G] [NormedSpace π G] [Fintype ΞΉ] (f : ContinuousMultilinearMap π Eβ G) (k : β) (x : (i : ΞΉ) β Eβ i) : f.iteratedFDeriv k x = β e, (f.iteratedFDerivComponent e.toEquivRange) ((Pi.compRightL π Eβ Subtype.val) x) - HasFDerivAt.linear_multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {G : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (G i)] [(i : ΞΉ) β NormedSpace π (G i)] [Fintype ΞΉ] {H : Type u_4} [NormedAddCommGroup H] [NormedSpace π H] [DecidableEq ΞΉ] {a : H β E} {a' : H βL[π] E} {b : (i : ΞΉ) β H β G i} {b' : (i : ΞΉ) β H βL[π] G i} {x : H} (ha : HasFDerivAt a a' x) (hb : β (i : ΞΉ), HasFDerivAt (b i) (b' i) x) (f : E βL[π] ContinuousMultilinearMap π G F) : HasFDerivAt (fun y => (f (a y)) fun i => b i y) ((f.flipMultilinear fun i => b i x).comp a' + β i, ((f (a x)).toContinuousLinearMap (fun j => b j x) i).comp (b' i)) x - HasFDerivWithinAt.linear_multilinear_comp π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {G : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (G i)] [(i : ΞΉ) β NormedSpace π (G i)] [Fintype ΞΉ] {H : Type u_4} [NormedAddCommGroup H] [NormedSpace π H] [DecidableEq ΞΉ] {a : H β E} {a' : H βL[π] E} {b : (i : ΞΉ) β H β G i} {b' : (i : ΞΉ) β H βL[π] G i} {s : Set H} {x : H} (ha : HasFDerivWithinAt a a' s x) (hb : β (i : ΞΉ), HasFDerivWithinAt (b i) (b' i) s x) (f : E βL[π] ContinuousMultilinearMap π G F) : HasFDerivWithinAt (fun y => (f (a y)) fun i => b i y) ((f.flipMultilinear fun i => b i x).comp a' + β i, ((f (a x)).toContinuousLinearMap (fun j => b j x) i).comp (b' i)) s x - ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear π Mathlib.Analysis.Calculus.FDeriv.Analytic
{π : Type u_1} [NontriviallyNormedField π] {E : Type u} [NormedAddCommGroup E] [NormedSpace π E] {F : Type v} [NormedAddCommGroup F] [NormedSpace π F] {ΞΉ : Type u_2} {G : ΞΉ β Type u_3} [(i : ΞΉ) β NormedAddCommGroup (G i)] [(i : ΞΉ) β NormedSpace π (G i)] [Fintype ΞΉ] [DecidableEq ΞΉ] (f : E βL[π] ContinuousMultilinearMap π G F) (v : E Γ ((i : ΞΉ) β G i)) : HasFDerivAt (fun p => (f p.1) p.2) ((f.flipMultilinear v.2).comp (ContinuousLinearMap.fst π E ((i : ΞΉ) β G i)) + β i, ((f v.1).toContinuousLinearMap v.2 i).comp ((ContinuousLinearMap.proj i).comp (ContinuousLinearMap.snd π E ((i : ΞΉ) β G i)))) v - fderiv_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, DifferentiableAt π (g i) x) : fderiv π (fun x => β i β u, g i x) x = β i β u, (β j β u.erase i, g j x) β’ fderiv π (g i) x - fderivWithin_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} [DecidableEq ΞΉ] {x : E} (hxs : UniqueDiffWithinAt π s x) (hg : β i β u, DifferentiableWithinAt π (g i) s x) : fderivWithin π (fun x => β i β u, g i x) s x = β i β u, (β j β u.erase i, g j x) β’ fderivWithin π (g i) s x - HasFDerivAt.finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} {g' : ΞΉ β E βL[π] πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, HasFDerivAt (g i) (g' i) x) : HasFDerivAt (fun x => β i β u, g i x) (β i β u, (β j β u.erase i, g j x) β’ g' i) x - HasStrictFDerivAt.finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} {g' : ΞΉ β E βL[π] πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, HasStrictFDerivAt (g i) (g' i) x) : HasStrictFDerivAt (fun x => β i β u, g i x) (β i β u, (β j β u.erase i, g j x) β’ g' i) x - HasFDerivWithinAt.finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} {g : ΞΉ β E β πΈ'} {g' : ΞΉ β E βL[π] πΈ'} [DecidableEq ΞΉ] {x : E} (hg : β i β u, HasFDerivWithinAt (g i) (g' i) s x) : HasFDerivWithinAt (fun x => β i β u, g i x) (β i β u, (β j β u.erase i, g j x) β’ g' i) s x - hasFDerivAt_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} [DecidableEq ΞΉ] [Fintype ΞΉ] {x : ΞΉ β πΈ'} : HasFDerivAt (fun x => β i β u, x i) (β i β u, (β j β u.erase i, x j) β’ ContinuousLinearMap.proj i) x - hasStrictFDerivAt_finset_prod π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] {u : Finset ΞΉ} [DecidableEq ΞΉ] [Fintype ΞΉ] {x : ΞΉ β πΈ'} : HasStrictFDerivAt (fun x => β i β u, x i) (β i β u, (β j β u.erase i, x j) β’ ContinuousLinearMap.proj i) x - fderiv_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {l : List ΞΉ} {x : E} (h : β i β l, DifferentiableAt π (fun x => f i x) x) : fderiv π (fun x => (List.map (fun x_1 => f x_1 x) l).prod) x = β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ fderiv π (fun x => f l[i] x) x - fderivWithin_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {l : List ΞΉ} {x : E} (hxs : UniqueDiffWithinAt π s x) (h : β i β l, DifferentiableWithinAt π (fun x => f i x) s x) : fderivWithin π (fun x => (List.map (fun x_1 => f x_1 x) l).prod) s x = β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ fderivWithin π (fun x => f l[i] x) s x - HasFDerivAt.list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {f' : ΞΉ β E βL[π] πΈ} {l : List ΞΉ} {x : E} (h : β i β l, HasFDerivAt (fun x => f i x) (f' i) x) : HasFDerivAt (fun x => (List.map (fun x_1 => f x_1 x) l).prod) (β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ f' l[i]) x - HasStrictFDerivAt.list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {f' : ΞΉ β E βL[π] πΈ} {l : List ΞΉ} {x : E} (h : β i β l, HasStrictFDerivAt (fun x => f i x) (f' i) x) : HasStrictFDerivAt (fun x => (List.map (fun x_1 => f x_1 x) l).prod) (β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ f' l[i]) x - HasFDerivWithinAt.list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π E] {s : Set E} {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {f : ΞΉ β E β πΈ} {f' : ΞΉ β E βL[π] πΈ} {l : List ΞΉ} {x : E} (h : β i β l, HasFDerivWithinAt (fun x => f i x) (f' i) s x) : HasFDerivWithinAt (fun x => (List.map (fun x_1 => f x_1 x) l).prod) (β i, (List.map (fun x_1 => f x_1 x) (List.take (βi) l)).prod β’ MulOpposite.op (List.map (fun x_1 => f x_1 x) (List.drop (βi).succ l)).prod β’ f' l[i]) s x - hasStrictFDerivAt_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] [Fintype ΞΉ] {l : List ΞΉ} {x : ΞΉ β πΈ} : HasStrictFDerivAt (fun x => (List.map x l).prod) (β i, (List.map x (List.take (βi) l)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l)).prod β’ ContinuousLinearMap.proj l[i]) x - hasFDerivAt_list_prod_finRange' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {n : β} {x : Fin n β πΈ} : HasFDerivAt (fun x => (List.map x (List.finRange n)).prod) (β i, (List.map x (List.take (βi) (List.finRange n))).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ (List.finRange n))).prod β’ ContinuousLinearMap.proj i) x - hasStrictFDerivAt_list_prod_finRange' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {n : β} {x : Fin n β πΈ} : HasStrictFDerivAt (fun x => (List.map x (List.finRange n)).prod) (β i, (List.map x (List.take (βi) (List.finRange n))).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ (List.finRange n))).prod β’ ContinuousLinearMap.proj i) x - hasFDerivAt_list_prod' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ' : Type u_7} [NormedCommRing πΈ'] [NormedAlgebra π πΈ'] [Fintype ΞΉ] {l : List ΞΉ} {x : ΞΉ β πΈ'} : HasFDerivAt (fun x => (List.map x l).prod) (β i, (List.map x (List.take (βi) l)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l)).prod β’ ContinuousLinearMap.proj l[i]) x - hasFDerivAt_list_prod_attach' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {l : List ΞΉ} {x : { i // i β l } β πΈ} : HasFDerivAt (fun x => (List.map x l.attach).prod) (β i, (List.map x (List.take (βi) l.attach)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l.attach)).prod β’ ContinuousLinearMap.proj l.attach[Fin.cast β― i]) x - hasStrictFDerivAt_list_prod_attach' π Mathlib.Analysis.Calculus.FDeriv.Mul
{π : Type u_1} [NontriviallyNormedField π] {ΞΉ : Type u_5} {πΈ : Type u_6} [NormedRing πΈ] [NormedAlgebra π πΈ] {l : List ΞΉ} {x : { i // i β l } β πΈ} : HasStrictFDerivAt (fun x => (List.map x l.attach).prod) (β i, (List.map x (List.take (βi) l.attach)).prod β’ MulOpposite.op (List.map x (List.drop (βi).succ l.attach)).prod β’ ContinuousLinearMap.proj l.attach[Fin.cast β― i]) x - BoxIntegral.hasIntegral_GP_divergence_of_forall_hasDerivWithinAt π Mathlib.Analysis.BoxIntegral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} [CompleteSpace E] (I : BoxIntegral.Box (Fin (n + 1))) (f : (Fin (n + 1) β β) β Fin (n + 1) β E) (f' : (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] Fin (n + 1) β E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hs : β x β s, ContinuousWithinAt f (BoxIntegral.Box.Icc I) x) (Hd : β x β BoxIntegral.Box.Icc I \ s, HasFDerivWithinAt f (f' x) (BoxIntegral.Box.Icc I) x) : BoxIntegral.HasIntegral I BoxIntegral.IntegrationParams.GP (fun x => β i, (f' x) (Pi.single i 1) i) BoxIntegral.BoxAdditiveMap.volume (β i, (BoxIntegral.integral (I.face i) BoxIntegral.IntegrationParams.GP (fun x => f (i.insertNth (I.upper i) x) i) BoxIntegral.BoxAdditiveMap.volume - BoxIntegral.integral (I.face i) BoxIntegral.IntegrationParams.GP (fun x => f (i.insertNth (I.lower i) x) i) BoxIntegral.BoxAdditiveMap.volume)) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable' π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : Fin (n + 1) β (Fin (n + 1) β β) β E) (f' : Fin (n + 1) β (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' i x) (Pi.single i 1) = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (b i) x)) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable' π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : Fin (n + 1) β (Fin (n + 1) β β) β E) (f' : Fin (n + 1) β (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' i x) (Pi.single i 1)) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' i x) (Pi.single i 1) = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (b i) x)) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f i (i.insertNth (a i) x)) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : (Fin (n + 1) β β) β Fin (n + 1) β E) (f' : (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] Fin (n + 1) β E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' x) (Pi.single i 1) i = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (b i) x) i) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} (a b : Fin (n + 1) β β) (hle : a β€ b) (f : (Fin (n + 1) β β) β Fin (n + 1) β E) (f' : (Fin (n + 1) β β) β (Fin (n + 1) β β) βL[β] Fin (n + 1) β E) (s : Set (Fin (n + 1) β β)) (hs : s.Countable) (Hc : ContinuousOn f (Set.Icc a b)) (Hd : β x β (Set.univ.pi fun i => Set.Ioo (a i) (b i)) \ s, HasFDerivAt f (f' x) x) (Hi : MeasureTheory.IntegrableOn (fun x => β i, (f' x) (Pi.single i 1) i) (Set.Icc a b) MeasureTheory.volume) : β« (x : Fin (n + 1) β β) in Set.Icc a b, β i, (f' x) (Pi.single i 1) i = β i, ((β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (b i) x) i) - β« (x : Fin n β β) in Set.Icc (a β i.succAbove) (b β i.succAbove), f (i.insertNth (a i) x) i) - MeasureTheory.integral_divergence_of_hasFDerivAt_off_countable_of_equiv π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace β F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F βL[β] Fin (n + 1) β β) (he_ord : β (x y : F), eL x β€ eL y β x β€ y) (he_vol : MeasureTheory.MeasurePreserving (βeL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) β F β E) (f' : Fin (n + 1) β F β F βL[β] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a β€ b) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β interior (Set.Icc a b) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F β E) (hDF : β (x : F), DF x = β i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : β« (x : F) in Set.Icc a b, DF x = β i, ((β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - MeasureTheory.integral_divergence_of_hasFDerivWithinAt_off_countable_of_equiv π Mathlib.MeasureTheory.Integral.DivergenceTheorem
{E : Type u} [NormedAddCommGroup E] [NormedSpace β E] {n : β} {F : Type u_1} [NormedAddCommGroup F] [NormedSpace β F] [Preorder F] [MeasureTheory.MeasureSpace F] [BorelSpace F] (eL : F βL[β] Fin (n + 1) β β) (he_ord : β (x y : F), eL x β€ eL y β x β€ y) (he_vol : MeasureTheory.MeasurePreserving (βeL) MeasureTheory.volume MeasureTheory.volume) (f : Fin (n + 1) β F β E) (f' : Fin (n + 1) β F β F βL[β] E) (s : Set F) (hs : s.Countable) (a b : F) (hle : a β€ b) (Hc : β (i : Fin (n + 1)), ContinuousOn (f i) (Set.Icc a b)) (Hd : β x β interior (Set.Icc a b) \ s, β (i : Fin (n + 1)), HasFDerivAt (f i) (f' i x) x) (DF : F β E) (hDF : β (x : F), DF x = β i, (f' i x) (eL.symm (Pi.single i 1))) (Hi : MeasureTheory.IntegrableOn DF (Set.Icc a b) MeasureTheory.volume) : β« (x : F) in Set.Icc a b, DF x = β i, ((β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL b i) x))) - β« (x : Fin n β β) in Set.Icc (eL a β i.succAbove) (eL b β i.succAbove), f i (eL.symm (i.insertNth (eL a i) x))) - CStarMatrix.toCLM_apply_eq_sum π Mathlib.Analysis.CStarAlgebra.CStarMatrix
{m : Type u_1} {n : Type u_2} {A : Type u_5} [Fintype m] [NonUnitalCStarAlgebra A] [PartialOrder A] [StarOrderedRing A] {M : CStarMatrix m n A} {v : WithCStarModule A (m β A)} : (CStarMatrix.toCLM M) v = (WithCStarModule.equiv A (n β A)).symm fun j => β i, v i * M i j - norm_iteratedFDeriv_clm_apply π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] {f : E β F βL[π] G} {g : E β F} {N : WithTop ββ} {n : β} (hf : ContDiff π N f) (hg : ContDiff π N g) (x : E) (hn : βn β€ N) : βiteratedFDeriv π n (fun y => (f y) (g y)) xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDeriv π i f xβ * βiteratedFDeriv π (n - i) g xβ - norm_iteratedFDerivWithin_clm_apply π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] {f : E β F βL[π] G} {g : E β F} {s : Set E} {x : E} {N : WithTop ββ} {n : β} (hf : ContDiffOn π N f s) (hg : ContDiffOn π N g s) (hs : UniqueDiffOn π s) (hx : x β s) (hn : βn β€ N) : βiteratedFDerivWithin π n (fun y => (f y) (g y)) s xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} (hf : ContDiff π N f) (hg : ContDiff π N g) (x : D) {n : β} (hn : βn β€ N) : βiteratedFDeriv π n (fun y => (B (f y)) (g y)) xβ β€ βBβ * β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDeriv π i f xβ * βiteratedFDeriv π (n - i) g xβ - ContinuousLinearMap.norm_iteratedFDeriv_le_of_bilinear_of_le_one π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} (hf : ContDiff π N f) (hg : ContDiff π N g) (x : D) {n : β} (hn : βn β€ N) (hB : βBβ β€ 1) : βiteratedFDeriv π n (fun y => (B (f y)) (g y)) xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDeriv π i f xβ * βiteratedFDeriv π (n - i) g xβ - ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_aux π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {Du Eu Fu Gu : Type u} [NormedAddCommGroup Du] [NormedSpace π Du] [NormedAddCommGroup Eu] [NormedSpace π Eu] [NormedAddCommGroup Fu] [NormedSpace π Fu] [NormedAddCommGroup Gu] [NormedSpace π Gu] (B : Eu βL[π] Fu βL[π] Gu) {f : Du β Eu} {g : Du β Fu} {n : β} {s : Set Du} {x : Du} (hf : ContDiffOn π (βn) f s) (hg : ContDiffOn π (βn) g s) (hs : UniqueDiffOn π s) (hx : x β s) : βiteratedFDerivWithin π n (fun y => (B (f y)) (g y)) s xβ β€ βBβ * β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} {s : Set D} {x : D} (hf : ContDiffOn π N f s) (hg : ContDiffOn π N g s) (hs : UniqueDiffOn π s) (hx : x β s) {n : β} (hn : βn β€ N) : βiteratedFDerivWithin π n (fun y => (B (f y)) (g y)) s xβ β€ βBβ * β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - ContinuousLinearMap.norm_iteratedFDerivWithin_le_of_bilinear_of_le_one π Mathlib.Analysis.Calculus.ContDiff.Bounds
{π : Type u_1} [NontriviallyNormedField π] {D : Type uD} [NormedAddCommGroup D] [NormedSpace π D] {E : Type uE} [NormedAddCommGroup E] [NormedSpace π E] {F : Type uF} [NormedAddCommGroup F] [NormedSpace π F] {G : Type uG} [NormedAddCommGroup G] [NormedSpace π G] (B : E βL[π] F βL[π] G) {f : D β E} {g : D β F} {N : WithTop ββ} {s : Set D} {x : D} (hf : ContDiffOn π N f s) (hg : ContDiffOn π N g s) (hs : UniqueDiffOn π s) (hx : x β s) {n : β} (hn : βn β€ N) (hB : βBβ β€ 1) : βiteratedFDerivWithin π n (fun y => (B (f y)) (g y)) s xβ β€ β i β Finset.range (n + 1), β(n.choose i) * βiteratedFDerivWithin π i f s xβ * βiteratedFDerivWithin π (n - i) g s xβ - IsLocalExtrOn.exists_multipliers_of_hasStrictFDerivAt π Mathlib.Analysis.Calculus.LagrangeMultipliers
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] [CompleteSpace E] {Ο : E β β} {xβ : E} {Ο' : E βL[β] β} {ΞΉ : Type u_3} [Fintype ΞΉ] {f : ΞΉ β E β β} {f' : ΞΉ β E βL[β] β} (hextr : IsLocalExtrOn Ο {x | β (i : ΞΉ), f i x = f i xβ} xβ) (hf' : β (i : ΞΉ), HasStrictFDerivAt (f i) (f' i) xβ) (hΟ' : HasStrictFDerivAt Ο Ο' xβ) : β Ξ Ξβ, (Ξ, Ξβ) β 0 β§ β i, Ξ i β’ f' i + Ξβ β’ Ο' = 0 - VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le π Mathlib.Analysis.Fourier.FourierTransformDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_2} {W : Type u_3} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) {f : V β E} [MeasurableSpace V] [BorelSpace V] [FiniteDimensional β V] {ΞΌ : MeasureTheory.Measure V} [ΞΌ.IsAddHaarMeasure] {K N : ββ} (hf : ContDiff β (βN) f) (h'f : β (k n : β), βk β€ K β βn β€ N β MeasureTheory.Integrable (fun v => βvβ ^ k * βiteratedFDeriv β n f vβ) ΞΌ) {k n : β} (hk : βk β€ K) (hn : βn β€ N) (v : V) (w : W) : |(L v) w| ^ n * βiteratedFDeriv β k (VectorFourier.fourierIntegral Real.fourierChar ΞΌ L.toLinearMapβ f) wβ β€ βvβ ^ n * (2 * Real.pi * βLβ) ^ k * (2 * βk + 2) ^ n * β p β Finset.range (k + 1) ΓΛ’ Finset.range (n + 1), β« (v : V), βvβ ^ p.1 * βiteratedFDeriv β p.2 f vβ βΞΌ - VectorFourier.norm_fourierPowSMulRight_iteratedFDeriv_fourierIntegral_le π Mathlib.Analysis.Fourier.FourierTransformDeriv
{E : Type u_1} [NormedAddCommGroup E] [NormedSpace β E] {V : Type u_2} {W : Type u_3} [NormedAddCommGroup V] [NormedSpace β V] [NormedAddCommGroup W] [NormedSpace β W] (L : V βL[β] W βL[β] β) {f : V β E} [MeasurableSpace V] [BorelSpace V] [FiniteDimensional β V] {ΞΌ : MeasureTheory.Measure V} [ΞΌ.IsAddHaarMeasure] {K N : ββ} (hf : ContDiff β (βN) f) (h'f : β (k n : β), βk β€ K β βn β€ N β MeasureTheory.Integrable (fun v => βvβ ^ k * βiteratedFDeriv β n f vβ) ΞΌ) {k n : β} (hk : βk β€ K) (hn : βn β€ N) {w : W} : βVectorFourier.fourierPowSMulRight (-L.flip) (iteratedFDeriv β k (VectorFourier.fourierIntegral Real.fourierChar ΞΌ L.toLinearMapβ f)) w nβ β€ (2 * Real.pi) ^ k * (2 * βk + 2) ^ n * βLβ ^ k * β p β Finset.range (k + 1) ΓΛ’ Finset.range (n + 1), β« (v : V), βvβ ^ p.1 * βiteratedFDeriv β p.2 f vβ βΞΌ
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
πReal.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
π"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
π_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
πReal.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
π(?a -> ?b) -> List ?a -> List ?b
πList ?a -> (?a -> ?b) -> List ?b
By main conclusion:
π|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allβ
andβ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
π|- _ < _ β tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
π Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ β _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08