Loogle!
Result
Found 12 declarations mentioning ContinuousWithinAt and ContinuousOn.
- ContinuousOn.continuousWithinAt ๐ Mathlib.Topology.ContinuousOn
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [TopologicalSpace ฮฒ] {f : ฮฑ โ ฮฒ} {s : Set ฮฑ} {x : ฮฑ} (hf : ContinuousOn f s) (hx : x โ s) : ContinuousWithinAt f s x - ContinuousOn.eq_1 ๐ Mathlib.Topology.ContinuousOn
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (f : X โ Y) (s : Set X) : ContinuousOn f s = โ x โ s, ContinuousWithinAt f s x - LocallyFinite.continuousOn_iUnion' ๐ Mathlib.Topology.LocallyFinite
{ฮน : Type u_1} {X : Type u_4} {Y : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] {f : ฮน โ Set X} {g : X โ Y} (hf : LocallyFinite f) (hc : โ (i : ฮน), โ x โ closure (f i), ContinuousWithinAt g (f i) x) : ContinuousOn g (โ i, f i) - continuousOn_of_locally_uniform_approx_of_continuousWithinAt ๐ Mathlib.Topology.UniformSpace.UniformApproximation
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [UniformSpace ฮฒ] {f : ฮฑ โ ฮฒ} {s : Set ฮฑ} (L : โ x โ s, โ u โ uniformity ฮฒ, โ t โ nhdsWithin x s, โ F, ContinuousWithinAt F s x โง โ y โ t, (f y, F y) โ u) : ContinuousOn f s - continuousWithinAt_cfc_fun ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {R : Type u_2} {A : Type u_3} {p : A โ Prop} [CommSemiring R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Ring A] [StarRing A] [TopologicalSpace A] [Algebra R A] [ContinuousFunctionalCalculus R A p] [TopologicalSpace X] {f : X โ R โ R} {a : A} {xโ : X} {s : Set X} (h_tendsto : TendstoUniformlyOn f (f xโ) (nhdsWithin xโ s) (spectrum R a)) (hf : โแถ (x : X) in nhdsWithin xโ s, ContinuousOn (f x) (spectrum R a)) : ContinuousWithinAt (fun x => cfc (f x) a) s xโ - ContinuousWithinAt.cfc_nnreal ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {A : Type u_2} [NormedRing A] [StarRing A] [NormedAlgebra โ A] [IsometricContinuousFunctionalCalculus โ A IsSelfAdjoint] [ContinuousStar A] [PartialOrder A] [StarOrderedRing A] [NonnegSpectrumClass โ A] [T2Space A] [IsTopologicalRing A] [TopologicalSpace X] {s : Set NNReal} (hs : IsCompact s) (f : NNReal โ NNReal) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, spectrum NNReal (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, 0 โค a x) (hf : ContinuousOn f s := by cfc_cont_tac) : ContinuousWithinAt (fun x => cfc f (a x)) t xโ - continuousWithinAt_cfcโ_fun ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {R : Type u_2} {A : Type u_3} {p : A โ Prop} [CommSemiring R] [StarRing R] [MetricSpace R] [Nontrivial R] [IsTopologicalSemiring R] [ContinuousStar R] [NonUnitalRing A] [StarRing A] [TopologicalSpace A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [NonUnitalContinuousFunctionalCalculus R A p] [TopologicalSpace X] {f : X โ R โ R} {a : A} {xโ : X} {s : Set X} (h_tendsto : TendstoUniformlyOn f (f xโ) (nhdsWithin xโ s) (quasispectrum R a)) (hf : โแถ (x : X) in nhdsWithin xโ s, ContinuousOn (f x) (quasispectrum R a)) (hf0 : โแถ (x : X) in nhdsWithin xโ s, f x 0 = 0 := by cfc_zero_tac) : ContinuousWithinAt (fun x => cfcโ (f x) a) s xโ - ContinuousWithinAt.cfc ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {๐ : Type u_2} {A : Type u_3} {p : A โ Prop} [RCLike ๐] [NormedRing A] [StarRing A] [NormedAlgebra ๐ A] [IsometricContinuousFunctionalCalculus ๐ A p] [ContinuousStar A] [TopologicalSpace X] {s : Set ๐} (hs : IsCompact s) (f : ๐ โ ๐) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, spectrum ๐ (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, p (a x)) (hf : ContinuousOn f s := by cfc_cont_tac) : ContinuousWithinAt (fun x => cfc f (a x)) t xโ - ContinuousWithinAt.cfcโ ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {๐ : Type u_2} {A : Type u_3} {p : A โ Prop} [RCLike ๐] [NonUnitalNormedRing A] [StarRing A] [NormedSpace ๐ A] [IsScalarTower ๐ A A] [SMulCommClass ๐ A A] [ContinuousStar A] [NonUnitalIsometricContinuousFunctionalCalculus ๐ A p] [TopologicalSpace X] {s : Set ๐} (hs : IsCompact s) (f : ๐ โ ๐) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, quasispectrum ๐ (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, p (a x)) (hf : ContinuousOn f s := by cfc_cont_tac) (hf0 : f 0 = 0 := by cfc_zero_tac) : ContinuousWithinAt (fun x => cfcโ f (a x)) t xโ - ContinuousWithinAt.cfcโ_nnreal ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {A : Type u_2} [NonUnitalNormedRing A] [StarRing A] [NormedSpace โ A] [IsScalarTower โ A A] [SMulCommClass โ A A] [ContinuousStar A] [NonUnitalIsometricContinuousFunctionalCalculus โ A IsSelfAdjoint] [PartialOrder A] [StarOrderedRing A] [NonnegSpectrumClass โ A] [T2Space A] [IsTopologicalRing A] [TopologicalSpace X] {s : Set NNReal} (hs : IsCompact s) (f : NNReal โ NNReal) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, quasispectrum NNReal (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, 0 โค a x) (hf : ContinuousOn f s := by cfc_cont_tac) (hf0 : f 0 = 0 := by cfc_zero_tac) : ContinuousWithinAt (fun x => cfcโ f (a x)) t xโ - tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_integrableOn ๐ Mathlib.MeasureTheory.Integral.PeakFunction
{ฮฑ : Type u_1} {E : Type u_2} {hm : MeasurableSpace ฮฑ} {ฮผ : MeasureTheory.Measure ฮฑ} [TopologicalSpace ฮฑ] [BorelSpace ฮฑ] [NormedAddCommGroup E] [NormedSpace โ E] {g : ฮฑ โ E} {xโ : ฮฑ} {s : Set ฮฑ} [CompleteSpace E] [TopologicalSpace.MetrizableSpace ฮฑ] [MeasureTheory.IsLocallyFiniteMeasure ฮผ] [ฮผ.IsOpenPosMeasure] (hs : IsCompact s) {c : ฮฑ โ โ} (hc : ContinuousOn c s) (h'c : โ y โ s, y โ xโ โ c y < c xโ) (hnc : โ x โ s, 0 โค c x) (hncโ : 0 < c xโ) (hโ : xโ โ closure (interior s)) (hmg : MeasureTheory.IntegrableOn g s ฮผ) (hcg : ContinuousWithinAt g s xโ) : Filter.Tendsto (fun n => (โซ (x : ฮฑ) in s, c x ^ n โฮผ)โปยน โข โซ (x : ฮฑ) in s, c x ^ n โข g x โฮผ) Filter.atTop (nhds (g xโ)) - tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_measure_nhdsWithin_pos ๐ Mathlib.MeasureTheory.Integral.PeakFunction
{ฮฑ : Type u_1} {E : Type u_2} {hm : MeasurableSpace ฮฑ} {ฮผ : MeasureTheory.Measure ฮฑ} [TopologicalSpace ฮฑ] [BorelSpace ฮฑ] [NormedAddCommGroup E] [NormedSpace โ E] {g : ฮฑ โ E} {xโ : ฮฑ} {s : Set ฮฑ} [CompleteSpace E] [TopologicalSpace.MetrizableSpace ฮฑ] [MeasureTheory.IsLocallyFiniteMeasure ฮผ] (hs : IsCompact s) (hฮผ : โ (u : Set ฮฑ), IsOpen u โ xโ โ u โ 0 < ฮผ (u โฉ s)) {c : ฮฑ โ โ} (hc : ContinuousOn c s) (h'c : โ y โ s, y โ xโ โ c y < c xโ) (hnc : โ x โ s, 0 โค c x) (hncโ : 0 < c xโ) (hโ : xโ โ s) (hmg : MeasureTheory.IntegrableOn g s ฮผ) (hcg : ContinuousWithinAt g s xโ) : Filter.Tendsto (fun n => (โซ (x : ฮฑ) in s, c x ^ n โฮผ)โปยน โข โซ (x : ฮฑ) in s, c x ^ n โข g x โฮผ) Filter.atTop (nhds (g xโ))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?aIf the pattern has parameters, they are matched in any order. Both of these will find
List.map:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?bBy main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโandโ) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsumeven though the hypothesisf i < g iis not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum, have "two" as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _ (if
there were any such lemmas). Metavariables (?a) are
assigned independently in each filter.
The #lucky button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 6ff4759 serving mathlib revision 9ead496