Loogle!
Result
Found 12 declarations mentioning ContinuousWithinAt and ContinuousOn.
- ContinuousOn.continuousWithinAt ๐ Mathlib.Topology.ContinuousOn
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [TopologicalSpace ฮฒ] {f : ฮฑ โ ฮฒ} {s : Set ฮฑ} {x : ฮฑ} (hf : ContinuousOn f s) (hx : x โ s) : ContinuousWithinAt f s x - ContinuousOn.eq_1 ๐ Mathlib.Topology.ContinuousOn
{X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (f : X โ Y) (s : Set X) : ContinuousOn f s = โ x โ s, ContinuousWithinAt f s x - LocallyFinite.continuousOn_iUnion' ๐ Mathlib.Topology.LocallyFinite
{ฮน : Type u_1} {X : Type u_4} {Y : Type u_5} [TopologicalSpace X] [TopologicalSpace Y] {f : ฮน โ Set X} {g : X โ Y} (hf : LocallyFinite f) (hc : โ (i : ฮน), โ x โ closure (f i), ContinuousWithinAt g (f i) x) : ContinuousOn g (โ i, f i) - continuousOn_of_locally_uniform_approx_of_continuousWithinAt ๐ Mathlib.Topology.UniformSpace.UniformApproximation
{ฮฑ : Type u_1} {ฮฒ : Type u_2} [TopologicalSpace ฮฑ] [UniformSpace ฮฒ] {f : ฮฑ โ ฮฒ} {s : Set ฮฑ} (L : โ x โ s, โ u โ uniformity ฮฒ, โ t โ nhdsWithin x s, โ F, ContinuousWithinAt F s x โง โ y โ t, (f y, F y) โ u) : ContinuousOn f s - continuousWithinAt_cfc_fun ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {R : Type u_2} {A : Type u_3} {p : A โ Prop} [CommSemiring R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Ring A] [StarRing A] [TopologicalSpace A] [Algebra R A] [ContinuousFunctionalCalculus R A p] [TopologicalSpace X] {f : X โ R โ R} {a : A} {xโ : X} {s : Set X} (h_tendsto : TendstoUniformlyOn f (f xโ) (nhdsWithin xโ s) (spectrum R a)) (hf : โแถ (x : X) in nhdsWithin xโ s, ContinuousOn (f x) (spectrum R a)) : ContinuousWithinAt (fun x => cfc (f x) a) s xโ - ContinuousWithinAt.cfc_nnreal ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {A : Type u_2} [NormedRing A] [StarRing A] [NormedAlgebra โ A] [IsometricContinuousFunctionalCalculus โ A IsSelfAdjoint] [ContinuousStar A] [PartialOrder A] [StarOrderedRing A] [NonnegSpectrumClass โ A] [T2Space A] [IsTopologicalRing A] [TopologicalSpace X] {s : Set NNReal} (hs : IsCompact s) (f : NNReal โ NNReal) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, spectrum NNReal (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, 0 โค a x) (hf : ContinuousOn f s := by cfc_cont_tac) : ContinuousWithinAt (fun x => cfc f (a x)) t xโ - continuousWithinAt_cfcโ_fun ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {R : Type u_2} {A : Type u_3} {p : A โ Prop} [CommSemiring R] [StarRing R] [MetricSpace R] [Nontrivial R] [IsTopologicalSemiring R] [ContinuousStar R] [NonUnitalRing A] [StarRing A] [TopologicalSpace A] [Module R A] [SMulCommClass R A A] [IsScalarTower R A A] [NonUnitalContinuousFunctionalCalculus R A p] [TopologicalSpace X] {f : X โ R โ R} {a : A} {xโ : X} {s : Set X} (h_tendsto : TendstoUniformlyOn f (f xโ) (nhdsWithin xโ s) (quasispectrum R a)) (hf : โแถ (x : X) in nhdsWithin xโ s, ContinuousOn (f x) (quasispectrum R a)) (hf0 : โแถ (x : X) in nhdsWithin xโ s, f x 0 = 0 := by cfc_zero_tac) : ContinuousWithinAt (fun x => cfcโ (f x) a) s xโ - ContinuousWithinAt.cfc ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {๐ : Type u_2} {A : Type u_3} {p : A โ Prop} [RCLike ๐] [NormedRing A] [StarRing A] [NormedAlgebra ๐ A] [IsometricContinuousFunctionalCalculus ๐ A p] [ContinuousStar A] [TopologicalSpace X] {s : Set ๐} (hs : IsCompact s) (f : ๐ โ ๐) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, spectrum ๐ (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, p (a x)) (hf : ContinuousOn f s := by cfc_cont_tac) : ContinuousWithinAt (fun x => cfc f (a x)) t xโ - ContinuousWithinAt.cfcโ_nnreal ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {A : Type u_2} [NonUnitalNormedRing A] [StarRing A] [NormedSpace โ A] [IsScalarTower โ A A] [SMulCommClass โ A A] [ContinuousStar A] [NonUnitalIsometricContinuousFunctionalCalculus โ A IsSelfAdjoint] [PartialOrder A] [StarOrderedRing A] [NonnegSpectrumClass โ A] [T2Space A] [IsTopologicalRing A] [TopologicalSpace X] {s : Set NNReal} (hs : IsCompact s) (f : NNReal โ NNReal) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, quasispectrum NNReal (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, 0 โค a x) (hf : ContinuousOn f s := by cfc_cont_tac) (hf0 : f 0 = 0 := by cfc_zero_tac) : ContinuousWithinAt (fun x => cfcโ f (a x)) t xโ - ContinuousWithinAt.cfcโ ๐ Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Continuity
{X : Type u_1} {๐ : Type u_2} {A : Type u_3} {p : A โ Prop} [RCLike ๐] [NonUnitalNormedRing A] [StarRing A] [NormedSpace ๐ A] [IsScalarTower ๐ A A] [SMulCommClass ๐ A A] [ContinuousStar A] [NonUnitalIsometricContinuousFunctionalCalculus ๐ A p] [TopologicalSpace X] {s : Set ๐} (hs : IsCompact s) (f : ๐ โ ๐) {a : X โ A} {xโ : X} {t : Set X} (hxโ : xโ โ t) (ha_cont : ContinuousWithinAt a t xโ) (ha : โแถ (x : X) in nhdsWithin xโ t, quasispectrum ๐ (a x) โ s) (ha' : โแถ (x : X) in nhdsWithin xโ t, p (a x)) (hf : ContinuousOn f s := by cfc_cont_tac) (hf0 : f 0 = 0 := by cfc_zero_tac) : ContinuousWithinAt (fun x => cfcโ f (a x)) t xโ - tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_integrableOn ๐ Mathlib.MeasureTheory.Integral.PeakFunction
{ฮฑ : Type u_1} {E : Type u_2} {hm : MeasurableSpace ฮฑ} {ฮผ : MeasureTheory.Measure ฮฑ} [TopologicalSpace ฮฑ] [BorelSpace ฮฑ] [NormedAddCommGroup E] [NormedSpace โ E] {g : ฮฑ โ E} {xโ : ฮฑ} {s : Set ฮฑ} [CompleteSpace E] [TopologicalSpace.MetrizableSpace ฮฑ] [MeasureTheory.IsLocallyFiniteMeasure ฮผ] [ฮผ.IsOpenPosMeasure] (hs : IsCompact s) {c : ฮฑ โ โ} (hc : ContinuousOn c s) (h'c : โ y โ s, y โ xโ โ c y < c xโ) (hnc : โ x โ s, 0 โค c x) (hncโ : 0 < c xโ) (hโ : xโ โ closure (interior s)) (hmg : MeasureTheory.IntegrableOn g s ฮผ) (hcg : ContinuousWithinAt g s xโ) : Filter.Tendsto (fun n => (โซ (x : ฮฑ) in s, c x ^ n โฮผ)โปยน โข โซ (x : ฮฑ) in s, c x ^ n โข g x โฮผ) Filter.atTop (nhds (g xโ)) - tendsto_setIntegral_pow_smul_of_unique_maximum_of_isCompact_of_measure_nhdsWithin_pos ๐ Mathlib.MeasureTheory.Integral.PeakFunction
{ฮฑ : Type u_1} {E : Type u_2} {hm : MeasurableSpace ฮฑ} {ฮผ : MeasureTheory.Measure ฮฑ} [TopologicalSpace ฮฑ] [BorelSpace ฮฑ] [NormedAddCommGroup E] [NormedSpace โ E] {g : ฮฑ โ E} {xโ : ฮฑ} {s : Set ฮฑ} [CompleteSpace E] [TopologicalSpace.MetrizableSpace ฮฑ] [MeasureTheory.IsLocallyFiniteMeasure ฮผ] (hs : IsCompact s) (hฮผ : โ (u : Set ฮฑ), IsOpen u โ xโ โ u โ 0 < ฮผ (u โฉ s)) {c : ฮฑ โ โ} (hc : ContinuousOn c s) (h'c : โ y โ s, y โ xโ โ c y < c xโ) (hnc : โ x โ s, 0 โค c x) (hncโ : 0 < c xโ) (hโ : xโ โ s) (hmg : MeasureTheory.IntegrableOn g s ฮผ) (hcg : ContinuousWithinAt g s xโ) : Filter.Tendsto (fun n => (โซ (x : ฮฑ) in s, c x ^ n โฮผ)โปยน โข โซ (x : ฮฑ) in s, c x ^ n โข g x โฮผ) Filter.atTop (nhds (g xโ))
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 3e2b26a