Loogle!
Result
Found 7 declarations mentioning DMatrix.map.
- DMatrix.map 📋 Mathlib.Data.Matrix.DMatrix
{m : Type u_1} {n : Type u_2} {α : m → n → Type v} (M : DMatrix m n α) {β : m → n → Type w} (f : ⦃i : m⦄ → ⦃j : n⦄ → α i j → β i j) : DMatrix m n β - DMatrix.map_apply 📋 Mathlib.Data.Matrix.DMatrix
{m : Type u_1} {n : Type u_2} {α : m → n → Type v} {M : DMatrix m n α} {β : m → n → Type w} {f : ⦃i : m⦄ → ⦃j : n⦄ → α i j → β i j} {i : m} {j : n} : M.map f i j = f (M i j) - DMatrix.map_map 📋 Mathlib.Data.Matrix.DMatrix
{m : Type u_1} {n : Type u_2} {α : m → n → Type v} {M : DMatrix m n α} {β : m → n → Type w} {γ : m → n → Type z} {f : ⦃i : m⦄ → ⦃j : n⦄ → α i j → β i j} {g : ⦃i : m⦄ → ⦃j : n⦄ → β i j → γ i j} : (M.map f).map g = M.map fun x x_1 x_2 => g (f x_2) - DMatrix.map_zero 📋 Mathlib.Data.Matrix.DMatrix
{m : Type u_1} {n : Type u_2} {α : m → n → Type v} [(i : m) → (j : n) → Zero (α i j)] {β : m → n → Type w} [(i : m) → (j : n) → Zero (β i j)] {f : ⦃i : m⦄ → ⦃j : n⦄ → α i j → β i j} (h : ∀ (i : m) (j : n), f 0 = 0) : DMatrix.map 0 f = 0 - AddMonoidHom.mapDMatrix_apply 📋 Mathlib.Data.Matrix.DMatrix
{m : Type u_1} {n : Type u_2} {α : m → n → Type v} [(i : m) → (j : n) → AddMonoid (α i j)] {β : m → n → Type w} [(i : m) → (j : n) → AddMonoid (β i j)] (f : ⦃i : m⦄ → ⦃j : n⦄ → α i j →+ β i j) (M : DMatrix m n α) : (AddMonoidHom.mapDMatrix f) M = M.map fun i j => ⇑f - DMatrix.map_add 📋 Mathlib.Data.Matrix.DMatrix
{m : Type u_1} {n : Type u_2} {α : m → n → Type v} [(i : m) → (j : n) → AddMonoid (α i j)] {β : m → n → Type w} [(i : m) → (j : n) → AddMonoid (β i j)] (f : ⦃i : m⦄ → ⦃j : n⦄ → α i j →+ β i j) (M N : DMatrix m n α) : ((M + N).map fun i j => ⇑f) = (M.map fun i j => ⇑f) + N.map fun i j => ⇑f - DMatrix.map_sub 📋 Mathlib.Data.Matrix.DMatrix
{m : Type u_1} {n : Type u_2} {α : m → n → Type v} [(i : m) → (j : n) → AddGroup (α i j)] {β : m → n → Type w} [(i : m) → (j : n) → AddGroup (β i j)] (f : ⦃i : m⦄ → ⦃j : n⦄ → α i j →+ β i j) (M N : DMatrix m n α) : ((M - N).map fun i j => ⇑f) = (M.map fun i j => ⇑f) - N.map fun i j => ⇑f
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision bce1d65