Loogle!
Result
Found 20 declarations mentioning ENat.map.
- ENat.map 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} (f : ℕ → α) (k : ℕ∞) : WithTop α - ENat.map_top 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} (f : ℕ → α) : ENat.map f ⊤ = ⊤ - ENat.map_coe 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} (f : ℕ → α) (a : ℕ) : ENat.map f ↑a = ↑(f a) - ENat.map_eq_top_iff 📋 Mathlib.Data.ENat.Basic
{n : ℕ∞} {α : Type u_1} {f : ℕ → α} : ENat.map f n = ⊤ ↔ n = ⊤ - ENat.map_zero 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} (f : ℕ → α) : ENat.map f 0 = ↑(f 0) - ENat.map_ofNat 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} (f : ℕ → α) (n : ℕ) [n.AtLeastTwo] : ENat.map f (OfNat.ofNat n) = ↑(f n) - ENat.map_one 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} (f : ℕ → α) : ENat.map f 1 = ↑(f 1) - ENat.monotone_map_iff 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} {f : ℕ → α} [Preorder α] : Monotone (ENat.map f) ↔ Monotone f - ENat.strictMono_map_iff 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} {f : ℕ → α} [Preorder α] : StrictMono (ENat.map f) ↔ StrictMono f - ENat.map_natCast_injective 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [AddLeftMono α] [ZeroLEOneClass α] [CharZero α] : Function.Injective (ENat.map Nat.cast) - ENat.map_natCast_inj 📋 Mathlib.Data.ENat.Basic
{m n : ℕ∞} {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [AddLeftMono α] [ZeroLEOneClass α] [CharZero α] : ENat.map Nat.cast m = ENat.map Nat.cast n ↔ m = n - ENat.map_natCast_strictMono 📋 Mathlib.Data.ENat.Basic
{α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [AddLeftMono α] [ZeroLEOneClass α] [CharZero α] : StrictMono (ENat.map Nat.cast) - ENat.map_natCast_nonneg 📋 Mathlib.Data.ENat.Basic
{n : ℕ∞} {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [AddLeftMono α] [ZeroLEOneClass α] : 0 ≤ ENat.map Nat.cast n - AddHom.ENatMap_apply 📋 Mathlib.Data.ENat.Basic
{N : Type u_2} [Add N] (f : ℕ →ₙ+ N) : ⇑f.ENatMap = ENat.map ⇑f - ENat.map_natCast_eq_zero 📋 Mathlib.Data.ENat.Basic
{n : ℕ∞} {α : Type u_1} [AddMonoidWithOne α] [PartialOrder α] [AddLeftMono α] [ZeroLEOneClass α] [CharZero α] : ENat.map Nat.cast n = 0 ↔ n = 0 - ENat.map_add 📋 Mathlib.Data.ENat.Basic
{β : Type u_2} {F : Type u_3} [Add β] [FunLike F ℕ β] [AddHomClass F ℕ β] (f : F) (a b : ℕ∞) : ENat.map (⇑f) (a + b) = ENat.map (⇑f) a + ENat.map (⇑f) b - AddMonoidHom.ENatMap_apply 📋 Mathlib.Data.ENat.Basic
{N : Type u_2} [AddZeroClass N] (f : ℕ →+ N) : ⇑f.ENatMap = ENat.map ⇑f - MonoidWithZeroHom.ENatMap_apply 📋 Mathlib.Data.ENat.Basic
{S : Type u_2} [MulZeroOneClass S] [DecidableEq S] [Nontrivial S] (f : ℕ →*₀ S) (hf : Function.Injective ⇑f) : ⇑(f.ENatMap hf) = ENat.map ⇑f - ENat.map_coe_nnreal 📋 Mathlib.Data.Real.ENatENNReal
: ENat.map Nat.cast = ENat.toENNReal - AnalyticAt.meromorphicAt_order 📋 Mathlib.Analysis.Meromorphic.Order
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {f : 𝕜 → E} {x : 𝕜} (hf : AnalyticAt 𝕜 f x) : ⋯.order = ENat.map Nat.cast hf.order
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
🔍Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
🔍"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
🔍_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
🔍Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
🔍(?a -> ?b) -> List ?a -> List ?b
🔍List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
🔍|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of all→
and∀
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
🔍|- _ < _ → tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
🔍 Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ → _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 19971e9
serving mathlib revision 40fea08