Loogle!
Result
Found 9024 declarations mentioning Equiv. Of these, 40 have a name containing "curry".
- Equiv.curry ๐ Mathlib.Logic.Equiv.Prod
(ฮฑ : Type u_9) (ฮฒ : Type u_10) (ฮณ : Sort u_11) : (ฮฑ ร ฮฒ โ ฮณ) โ (ฮฑ โ ฮฒ โ ฮณ) - Equiv.curry_apply ๐ Mathlib.Logic.Equiv.Prod
(ฮฑ : Type u_9) (ฮฒ : Type u_10) (ฮณ : Sort u_11) : โ(Equiv.curry ฮฑ ฮฒ ฮณ) = Function.curry - Equiv.curry_symm_apply ๐ Mathlib.Logic.Equiv.Prod
(ฮฑ : Type u_9) (ฮฒ : Type u_10) (ฮณ : Sort u_11) : โ(Equiv.curry ฮฑ ฮฒ ฮณ).symm = Function.uncurry - Equiv.piCurry ๐ Mathlib.Logic.Equiv.Basic
{ฮฑ : Type u_11} {ฮฒ : ฮฑ โ Type u_9} (ฮณ : (a : ฮฑ) โ ฮฒ a โ Type u_10) : ((x : (i : ฮฑ) ร ฮฒ i) โ ฮณ x.fst x.snd) โ ((a : ฮฑ) โ (b : ฮฒ a) โ ฮณ a b) - Equiv.piCurry_apply ๐ Mathlib.Logic.Equiv.Basic
{ฮฑ : Type u_11} {ฮฒ : ฮฑ โ Type u_9} (ฮณ : (a : ฮฑ) โ ฮฒ a โ Type u_10) (f : (x : (i : ฮฑ) ร ฮฒ i) โ ฮณ x.fst x.snd) : (Equiv.piCurry ฮณ) f = Sigma.curry f - Equiv.piCurry_symm_apply ๐ Mathlib.Logic.Equiv.Basic
{ฮฑ : Type u_11} {ฮฒ : ฮฑ โ Type u_9} (ฮณ : (a : ฮฑ) โ ฮฒ a โ Type u_10) (f : (a : ฮฑ) โ (b : ฮฒ a) โ ฮณ a b) : (Equiv.piCurry ฮณ).symm f = Sigma.uncurry f - DFinsupp.sigmaCurryEquiv ๐ Mathlib.Data.DFinsupp.Sigma
{ฮน : Type u} {ฮฑ : ฮน โ Type u_2} {ฮด : (i : ฮน) โ ฮฑ i โ Type v} [(i : ฮน) โ (j : ฮฑ i) โ Zero (ฮด i j)] [DecidableEq ฮน] : (ฮ โ (i : (x : ฮน) ร ฮฑ x), ฮด i.fst i.snd) โ ฮ โ (i : ฮน) (j : ฮฑ i), ฮด i j - DFinsupp.sigmaCurryLEquiv_apply ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {R : Type u_3} [Semiring R] {ฮฑ : ฮน โ Type u_7} {M : (i : ฮน) โ ฮฑ i โ Type u_8} [(i : ฮน) โ (j : ฮฑ i) โ AddCommMonoid (M i j)] [(i : ฮน) โ (j : ฮฑ i) โ Module R (M i j)] [DecidableEq ฮน] (aโ : ฮ โ (i : (x : ฮน) ร ฮฑ x), M i.fst i.snd) : DFinsupp.sigmaCurryLEquiv aโ = DFinsupp.sigmaCurryEquiv aโ - DFinsupp.sigmaCurryLEquiv_symm_apply ๐ Mathlib.LinearAlgebra.DFinsupp
{ฮน : Type u_1} {R : Type u_3} [Semiring R] {ฮฑ : ฮน โ Type u_7} {M : (i : ฮน) โ ฮฑ i โ Type u_8} [(i : ฮน) โ (j : ฮฑ i) โ AddCommMonoid (M i j)] [(i : ฮน) โ (j : ฮฑ i) โ Module R (M i j)] [DecidableEq ฮน] (aโ : ฮ โ (i : ฮน) (j : ฮฑ i), M i j) : DFinsupp.sigmaCurryLEquiv.symm aโ = DFinsupp.sigmaCurryEquiv.symm aโ - CategoryTheory.Functor.curryingEquiv ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] : CategoryTheory.Functor C (CategoryTheory.Functor D E) โ CategoryTheory.Functor (C ร D) E - CategoryTheory.Functor.curryingFlipEquiv ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] : CategoryTheory.Functor D (CategoryTheory.Functor C E) โ CategoryTheory.Functor (C ร D) E - CategoryTheory.Functor.curryingEquiv_apply_obj ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) (X : C ร D) : (CategoryTheory.Functor.curryingEquiv F).obj X = (F.obj X.1).obj X.2 - CategoryTheory.Functor.curryingFlipEquiv_apply_obj ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (aโ : CategoryTheory.Functor D (CategoryTheory.Functor C E)) (X : C ร D) : (CategoryTheory.Functor.curryingFlipEquiv aโ).obj X = (aโ.obj X.2).obj X.1 - CategoryTheory.Functor.curryingEquiv_symm_apply_obj_obj ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (G : CategoryTheory.Functor (C ร D) E) (X : C) (Y : D) : ((CategoryTheory.Functor.curryingEquiv.symm G).obj X).obj Y = G.obj (X, Y) - CategoryTheory.Functor.curryingFlipEquiv_symm_apply_obj_obj ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (aโ : CategoryTheory.Functor (C ร D) E) (k : D) (j : C) : ((CategoryTheory.Functor.curryingFlipEquiv.symm aโ).obj k).obj j = aโ.obj (j, k) - CategoryTheory.Functor.curryingEquiv_symm_apply_obj_map ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (G : CategoryTheory.Functor (C ร D) E) (X : C) {Xโ Yโ : D} (g : Xโ โถ Yโ) : ((CategoryTheory.Functor.curryingEquiv.symm G).obj X).map g = G.map (CategoryTheory.CategoryStruct.id X, g) - CategoryTheory.Functor.curryingEquiv_apply_map ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (F : CategoryTheory.Functor C (CategoryTheory.Functor D E)) {X Y : C ร D} (f : X โถ Y) : (CategoryTheory.Functor.curryingEquiv F).map f = CategoryTheory.CategoryStruct.comp ((F.map f.1).app X.2) ((F.obj Y.1).map f.2) - CategoryTheory.Functor.curryingEquiv_symm_apply_map_app ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (G : CategoryTheory.Functor (C ร D) E) {Xโ Yโ : C} (f : Xโ โถ Yโ) (Y : D) : ((CategoryTheory.Functor.curryingEquiv.symm G).map f).app Y = G.map (f, CategoryTheory.CategoryStruct.id Y) - CategoryTheory.Functor.curryingFlipEquiv_symm_apply_obj_map ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (aโ : CategoryTheory.Functor (C ร D) E) (k : D) {Xโ Yโ : C} (f : Xโ โถ Yโ) : ((CategoryTheory.Functor.curryingFlipEquiv.symm aโ).obj k).map f = aโ.map (f, CategoryTheory.CategoryStruct.id k) - CategoryTheory.Functor.curryingFlipEquiv_apply_map ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (aโ : CategoryTheory.Functor D (CategoryTheory.Functor C E)) {X Y : C ร D} (f : X โถ Y) : (CategoryTheory.Functor.curryingFlipEquiv aโ).map f = CategoryTheory.CategoryStruct.comp ((aโ.map f.2).app X.1) ((aโ.obj Y.2).map f.1) - CategoryTheory.Functor.curryingFlipEquiv_symm_apply_map_app ๐ Mathlib.CategoryTheory.Functor.Currying
{C : Type uโ} [CategoryTheory.Category.{vโ, uโ} C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] {E : Type uโ} [CategoryTheory.Category.{vโ, uโ} E] (aโ : CategoryTheory.Functor (C ร D) E) {Xโ Yโ : D} (f : Xโ โถ Yโ) (j : C) : ((CategoryTheory.Functor.curryingFlipEquiv.symm aโ).map f).app j = aโ.map (CategoryTheory.CategoryStruct.id j, f) - CategoryTheory.MonoidalClosed.curryHomEquiv' ๐ Mathlib.CategoryTheory.Closed.Monoidal
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {X Y : C} [CategoryTheory.Closed X] : (X โถ Y) โ (CategoryTheory.MonoidalCategoryStruct.tensorUnit C โถ (CategoryTheory.ihom X).obj Y) - CategoryTheory.MonoidalClosed.curryHomEquiv'_apply ๐ Mathlib.CategoryTheory.Closed.Monoidal
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {X Y : C} [CategoryTheory.Closed X] (f : X โถ Y) : CategoryTheory.MonoidalClosed.curryHomEquiv' f = CategoryTheory.MonoidalClosed.curry' f - CategoryTheory.MonoidalClosed.curryHomEquiv'_symm_apply ๐ Mathlib.CategoryTheory.Closed.Monoidal
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {X Y : C} [CategoryTheory.Closed X] (g : CategoryTheory.MonoidalCategoryStruct.tensorUnit C โถ (CategoryTheory.ihom X).obj Y) : CategoryTheory.MonoidalClosed.curryHomEquiv'.symm g = CategoryTheory.MonoidalClosed.uncurry' g - CategoryTheory.MonoidalClosed.ofEquiv_curry_def ๐ Mathlib.CategoryTheory.Closed.Monoidal
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) {G : CategoryTheory.Functor D C} (adj : F โฃ G) [F.Monoidal] [F.IsEquivalence] [CategoryTheory.MonoidalClosed D] {X Y Z : C} (f : CategoryTheory.MonoidalCategoryStruct.tensorObj X Y โถ Z) : CategoryTheory.MonoidalClosed.curry f = (adj.homEquiv Y ((CategoryTheory.ihom (F.obj X)).obj (F.obj Z))) (CategoryTheory.MonoidalClosed.curry ((adj.toEquivalence.symm.toAdjunction.homEquiv (CategoryTheory.MonoidalCategoryStruct.tensorObj (F.obj X) (F.obj Y)) Z) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Functor.Monoidal.commTensorLeft F X).compInverseIso.hom.app Y) f))) - CategoryTheory.MonoidalClosed.ofEquiv_uncurry_def ๐ Mathlib.CategoryTheory.Closed.Monoidal
{C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.MonoidalCategory C] {D : Type uโ} [CategoryTheory.Category.{vโ, uโ} D] [CategoryTheory.MonoidalCategory D] (F : CategoryTheory.Functor C D) {G : CategoryTheory.Functor D C} (adj : F โฃ G) [F.Monoidal] [F.IsEquivalence] [CategoryTheory.MonoidalClosed D] {X Y Z : C} (f : Y โถ (CategoryTheory.ihom X).obj Z) : CategoryTheory.MonoidalClosed.uncurry f = CategoryTheory.CategoryStruct.comp ((CategoryTheory.Functor.Monoidal.commTensorLeft F X).compInverseIso.inv.app Y) ((adj.toEquivalence.symm.toAdjunction.homEquiv ((F.comp (CategoryTheory.MonoidalCategory.tensorLeft (F.obj X))).obj Y) Z).symm (CategoryTheory.MonoidalClosed.uncurry ((adj.homEquiv Y ((CategoryTheory.ihom (F.obj X)).obj (adj.toEquivalence.symm.inverse.obj Z))).symm f))) - MultilinearMap.curryFinFinset_apply ๐ Mathlib.LinearAlgebra.Multilinear.Curry
{R : Type uR} {Mโ : Type vโ} {M' : Type v'} [CommSemiring R] [AddCommMonoid M'] [AddCommMonoid Mโ] [Module R M'] [Module R Mโ] {k l n : โ} {s : Finset (Fin n)} (hk : s.card = k) (hl : sแถ.card = l) (f : MultilinearMap R (fun x => M') Mโ) (mk : Fin k โ M') (ml : Fin l โ M') : (((MultilinearMap.curryFinFinset R Mโ M' hk hl) f) mk) ml = f fun i => Sum.elim mk ml ((finSumEquivOfFinset hk hl).symm i) - MultilinearMap.curryFinFinset_symm_apply ๐ Mathlib.LinearAlgebra.Multilinear.Curry
{R : Type uR} {Mโ : Type vโ} {M' : Type v'} [CommSemiring R] [AddCommMonoid M'] [AddCommMonoid Mโ] [Module R M'] [Module R Mโ] {k l n : โ} {s : Finset (Fin n)} (hk : s.card = k) (hl : sแถ.card = l) (f : MultilinearMap R (fun x => M') (MultilinearMap R (fun x => M') Mโ)) (m : Fin n โ M') : ((MultilinearMap.curryFinFinset R Mโ M' hk hl).symm f) m = (f fun i => m ((finSumEquivOfFinset hk hl) (Sum.inl i))) fun i => m ((finSumEquivOfFinset hk hl) (Sum.inr i)) - ContinuousMultilinearMap.curryFinFinset_apply ๐ Mathlib.Analysis.NormedSpace.Multilinear.Curry
{๐ : Type u} {n : โ} {G : Type wG} {G' : Type wG'} [NontriviallyNormedField ๐] [NormedAddCommGroup G] [NormedSpace ๐ G] [NormedAddCommGroup G'] [NormedSpace ๐ G'] {k l : โ} {s : Finset (Fin n)} (hk : s.card = k) (hl : sแถ.card = l) (f : ContinuousMultilinearMap ๐ (fun i => G) G') (mk : Fin k โ G) (ml : Fin l โ G) : (((ContinuousMultilinearMap.curryFinFinset ๐ G G' hk hl) f) mk) ml = f fun i => Sum.elim mk ml ((finSumEquivOfFinset hk hl).symm i) - ContinuousMultilinearMap.curryFinFinset_symm_apply ๐ Mathlib.Analysis.NormedSpace.Multilinear.Curry
{๐ : Type u} {n : โ} {G : Type wG} {G' : Type wG'} [NontriviallyNormedField ๐] [NormedAddCommGroup G] [NormedSpace ๐ G] [NormedAddCommGroup G'] [NormedSpace ๐ G'] {k l : โ} {s : Finset (Fin n)} (hk : s.card = k) (hl : sแถ.card = l) (f : ContinuousMultilinearMap ๐ (fun i => G) (ContinuousMultilinearMap ๐ (fun i => G) G')) (m : Fin n โ G) : ((ContinuousMultilinearMap.curryFinFinset ๐ G G' hk hl).symm f) m = (f fun i => m ((finSumEquivOfFinset hk hl) (Sum.inl i))) fun i => m ((finSumEquivOfFinset hk hl) (Sum.inr i)) - Function.OfArity.curryEquiv ๐ Mathlib.Data.Fin.Tuple.Curry
{ฮฑ ฮฒ : Type u} (n : โ) : ((Fin n โ ฮฑ) โ ฮฒ) โ Function.OfArity ฮฑ ฮฒ n - Function.FromTypes.curryEquiv ๐ Mathlib.Data.Fin.Tuple.Curry
{n : โ} {ฯ : Type u} (p : Fin n โ Type u) : (((i : Fin n) โ p i) โ ฯ) โ Function.FromTypes p ฯ - Function.OfArity.curryEquiv_apply ๐ Mathlib.Data.Fin.Tuple.Curry
{ฮฑ ฮฒ : Type u} (n : โ) (aโ : (Fin n โ ฮฑ) โ ฮฒ) : (Function.OfArity.curryEquiv n) aโ = Function.FromTypes.curry aโ - Function.FromTypes.curryEquiv_apply ๐ Mathlib.Data.Fin.Tuple.Curry
{n : โ} {ฯ : Type u} (p : Fin n โ Type u) (aโ : ((i : Fin n) โ p i) โ ฯ) : (Function.FromTypes.curryEquiv p) aโ = Function.FromTypes.curry aโ - Function.OfArity.curryEquiv_symm_apply ๐ Mathlib.Data.Fin.Tuple.Curry
{ฮฑ ฮฒ : Type u} (n : โ) (f : Function.FromTypes (fun a => ฮฑ) ฮฒ) (aโ : Fin n โ ฮฑ) : (Function.OfArity.curryEquiv n).symm f aโ = f.uncurry aโ - Function.FromTypes.curryEquiv_symm_apply ๐ Mathlib.Data.Fin.Tuple.Curry
{n : โ} {ฯ : Type u} (p : Fin n โ Type u) (f : Function.FromTypes p ฯ) (aโ : (i : Fin n) โ p i) : (Function.FromTypes.curryEquiv p).symm f aโ = f.uncurry aโ - Function.OfArity.curry_two_eq_curry ๐ Mathlib.Data.Fin.Tuple.Curry
{ฮฑ ฮฒ : Type u} (f : (Fin 2 โ ฮฑ) โ ฮฒ) : Function.OfArity.curry f = Function.curry (f โ โ(finTwoArrowEquiv ฮฑ).symm) - Function.OfArity.uncurry_two_eq_uncurry ๐ Mathlib.Data.Fin.Tuple.Curry
{ฮฑ ฮฒ : Type u} (f : Function.OfArity ฮฑ ฮฒ 2) : f.uncurry = Function.uncurry f โ โ(finTwoArrowEquiv ฮฑ) - Function.FromTypes.uncurry_two_eq_uncurry ๐ Mathlib.Data.Fin.Tuple.Curry
(p : Fin 2 โ Type u) (ฯ : Type u) (f : Function.FromTypes p ฯ) : f.uncurry = Function.uncurry f โ โ(piFinTwoEquiv p) - Function.FromTypes.curry_two_eq_curry ๐ Mathlib.Data.Fin.Tuple.Curry
{p : Fin 2 โ Type u} {ฯ : Type u} (f : ((i : Fin 2) โ p i) โ ฯ) : Function.FromTypes.curry f = Function.curry (f โ โ(piFinTwoEquiv p).symm)
About
Loogle searches Lean and Mathlib definitions and theorems.
You can use Loogle from within the Lean4 VSCode language extension
using (by default) Ctrl-K Ctrl-S. You can also try the
#loogle
command from LeanSearchClient,
the CLI version, the Loogle
VS Code extension, the lean.nvim
integration or the Zulip bot.
Usage
Loogle finds definitions and lemmas in various ways:
By constant:
๐Real.sin
finds all lemmas whose statement somehow mentions the sine function.By lemma name substring:
๐"differ"
finds all lemmas that have"differ"
somewhere in their lemma name.By subexpression:
๐_ * (_ ^ _)
finds all lemmas whose statements somewhere include a product where the second argument is raised to some power.The pattern can also be non-linear, as in
๐Real.sqrt ?a * Real.sqrt ?a
If the pattern has parameters, they are matched in any order. Both of these will find
List.map
:
๐(?a -> ?b) -> List ?a -> List ?b
๐List ?a -> (?a -> ?b) -> List ?b
By main conclusion:
๐|- tsum _ = _ * tsum _
finds all lemmas where the conclusion (the subexpression to the right of allโ
andโ
) has the given shape.As before, if the pattern has parameters, they are matched against the hypotheses of the lemma in any order; for example,
๐|- _ < _ โ tsum _ < tsum _
will findtsum_lt_tsum
even though the hypothesisf i < g i
is not the last.
If you pass more than one such search filter, separated by commas
Loogle will return lemmas which match all of them. The
search
๐ Real.sin, "two", tsum, _ * _, _ ^ _, |- _ < _ โ _
would find all lemmas which mention the constants Real.sin
and tsum
, have "two"
as a substring of the
lemma name, include a product and a power somewhere in the type,
and have a hypothesis of the form _ < _
(if
there were any such lemmas). Metavariables (?a
) are
assigned independently in each filter.
The #lucky
button will directly send you to the
documentation of the first hit.
Source code
You can find the source code for this service at https://github.com/nomeata/loogle. The https://loogle.lean-lang.org/ service is provided by the Lean FRO.
This is Loogle revision 06e7f72
serving mathlib revision 3a0559f